xgboost/src/data/iterative_dmatrix.cu
Jiaming Yuan 292bb677e5
[EM] Support mmap backed ellpack. (#10602)
- Support resource view in ellpack.
- Define the CUDA version of MMAP resource.
- Define the CUDA version of malloc resource.
- Refactor cuda runtime API wrappers, and add memory access related wrappers.
- gather windows macros into a single header.
2024-07-18 08:20:21 +08:00

217 lines
7.6 KiB
Plaintext

/**
* Copyright 2020-2024, XGBoost contributors
*/
#include <algorithm>
#include <memory>
#include "../collective/allreduce.h"
#include "../common/cuda_rt_utils.h" // for AllVisibleGPUs
#include "../common/hist_util.cuh"
#include "batch_utils.h" // for RegenGHist
#include "device_adapter.cuh"
#include "ellpack_page.cuh"
#include "iterative_dmatrix.h"
#include "proxy_dmatrix.cuh"
#include "proxy_dmatrix.h"
#include "simple_batch_iterator.h"
namespace xgboost::data {
void IterativeDMatrix::InitFromCUDA(Context const* ctx, BatchParam const& p,
DataIterHandle iter_handle, float missing,
std::shared_ptr<DMatrix> ref) {
// A handle passed to external iterator.
DMatrixProxy* proxy = MakeProxy(proxy_);
CHECK(proxy);
// The external iterator
auto iter =
DataIterProxy<DataIterResetCallback, XGDMatrixCallbackNext>{iter_handle, reset_, next_};
dh::XGBCachingDeviceAllocator<char> alloc;
auto num_rows = [&]() {
return cuda_impl::Dispatch(proxy, [](auto const& value) { return value.NumRows(); });
};
auto num_cols = [&]() {
return cuda_impl::Dispatch(proxy, [](auto const& value) { return value.NumCols(); });
};
size_t row_stride = 0;
size_t nnz = 0;
// Sketch for all batches.
std::vector<common::SketchContainer> sketch_containers;
size_t batches = 0;
size_t accumulated_rows = 0;
bst_feature_t cols = 0;
int32_t current_device;
dh::safe_cuda(cudaGetDevice(&current_device));
auto get_ctx = [&]() {
Context d_ctx = (ctx->IsCUDA()) ? *ctx : Context{}.MakeCUDA(current_device);
CHECK(!d_ctx.IsCPU());
return d_ctx;
};
auto get_device = [&]() {
auto d = (ctx->IsCUDA()) ? ctx->Device() : DeviceOrd::CUDA(current_device);
CHECK(!d.IsCPU());
return d;
};
fmat_ctx_ = get_ctx();
/**
* Generate quantiles
*/
auto cuts = std::make_shared<common::HistogramCuts>();
do {
// We use do while here as the first batch is fetched in ctor
CHECK_LT(ctx->Ordinal(), common::AllVisibleGPUs());
dh::safe_cuda(cudaSetDevice(get_device().ordinal));
if (cols == 0) {
cols = num_cols();
auto rc = collective::Allreduce(ctx, linalg::MakeVec(&cols, 1), collective::Op::kMax);
SafeColl(rc);
this->info_.num_col_ = cols;
} else {
CHECK_EQ(cols, num_cols()) << "Inconsistent number of columns.";
}
if (!ref) {
sketch_containers.emplace_back(proxy->Info().feature_types, p.max_bin, cols, num_rows(),
get_device());
auto* p_sketch = &sketch_containers.back();
proxy->Info().weights_.SetDevice(get_device());
cuda_impl::Dispatch(proxy, [&](auto const& value) {
common::AdapterDeviceSketch(value, p.max_bin, proxy->Info(), missing, p_sketch);
});
}
auto batch_rows = num_rows();
accumulated_rows += batch_rows;
dh::device_vector<size_t> row_counts(batch_rows + 1, 0);
common::Span<size_t> row_counts_span(row_counts.data().get(), row_counts.size());
row_stride = std::max(row_stride, cuda_impl::Dispatch(proxy, [=](auto const& value) {
return GetRowCounts(value, row_counts_span, get_device(), missing);
}));
nnz += thrust::reduce(thrust::cuda::par(alloc), row_counts.begin(), row_counts.end());
batches++;
} while (iter.Next());
iter.Reset();
auto n_features = cols;
CHECK_GE(n_features, 1) << "Data must has at least 1 column.";
dh::safe_cuda(cudaSetDevice(get_device().ordinal));
if (!ref) {
HostDeviceVector<FeatureType> ft;
common::SketchContainer final_sketch(
sketch_containers.empty() ? ft : sketch_containers.front().FeatureTypes(), p.max_bin, cols,
accumulated_rows, get_device());
for (auto const& sketch : sketch_containers) {
final_sketch.Merge(sketch.ColumnsPtr(), sketch.Data());
final_sketch.FixError();
}
sketch_containers.clear();
sketch_containers.shrink_to_fit();
final_sketch.MakeCuts(ctx, cuts.get(), this->info_.IsColumnSplit());
} else {
GetCutsFromRef(ctx, ref, Info().num_col_, p, cuts.get());
}
this->info_.num_row_ = accumulated_rows;
this->info_.num_nonzero_ = nnz;
auto init_page = [this, &cuts, row_stride, accumulated_rows, get_device]() {
if (!ellpack_) {
// Should be put inside the while loop to protect against empty batch. In
// that case device id is invalid.
ellpack_.reset(new EllpackPage);
*(ellpack_->Impl()) =
EllpackPageImpl(&fmat_ctx_, cuts, this->IsDense(), row_stride, accumulated_rows);
}
};
/**
* Generate gradient index.
*/
size_t offset = 0;
iter.Reset();
size_t n_batches_for_verification = 0;
while (iter.Next()) {
init_page();
dh::safe_cuda(cudaSetDevice(get_device().ordinal));
auto rows = num_rows();
dh::device_vector<size_t> row_counts(rows + 1, 0);
common::Span<size_t> row_counts_span(row_counts.data().get(), row_counts.size());
cuda_impl::Dispatch(proxy, [=](auto const& value) {
return GetRowCounts(value, row_counts_span, get_device(), missing);
});
auto is_dense = this->IsDense();
proxy->Info().feature_types.SetDevice(get_device());
auto d_feature_types = proxy->Info().feature_types.ConstDeviceSpan();
auto new_impl = cuda_impl::Dispatch(proxy, [&](auto const& value) {
return EllpackPageImpl(&fmat_ctx_, value, missing, is_dense, row_counts_span, d_feature_types,
row_stride, rows, cuts);
});
std::size_t num_elements = ellpack_->Impl()->Copy(&fmat_ctx_, &new_impl, offset);
offset += num_elements;
proxy->Info().num_row_ = num_rows();
proxy->Info().num_col_ = cols;
if (batches != 1) {
this->info_.Extend(std::move(proxy->Info()), false, true);
}
n_batches_for_verification++;
}
CHECK_EQ(batches, n_batches_for_verification)
<< "Different number of batches returned between 2 iterations";
if (batches == 1) {
this->info_ = std::move(proxy->Info());
this->info_.num_nonzero_ = nnz;
CHECK_EQ(proxy->Info().labels.Size(), 0);
}
iter.Reset();
// Synchronise worker columns
info_.SynchronizeNumberOfColumns(ctx);
}
BatchSet<EllpackPage> IterativeDMatrix::GetEllpackBatches(Context const* ctx,
BatchParam const& param) {
if (param.Initialized()) {
CheckParam(param);
CHECK(!detail::RegenGHist(param, batch_)) << error::InconsistentMaxBin();
}
if (!ellpack_ && !ghist_) {
LOG(FATAL) << "`QuantileDMatrix` not initialized.";
}
if (!ellpack_) {
ellpack_.reset(new EllpackPage());
if (ctx->IsCUDA()) {
this->Info().feature_types.SetDevice(ctx->Device());
*ellpack_->Impl() =
EllpackPageImpl(ctx, *this->ghist_, this->Info().feature_types.ConstDeviceSpan());
} else if (fmat_ctx_.IsCUDA()) {
this->Info().feature_types.SetDevice(fmat_ctx_.Device());
*ellpack_->Impl() =
EllpackPageImpl(&fmat_ctx_, *this->ghist_, this->Info().feature_types.ConstDeviceSpan());
} else {
// Can happen when QDM is initialized on CPU, but a GPU version is queried by a different QDM
// for cut reference.
auto cuda_ctx = ctx->MakeCUDA();
this->Info().feature_types.SetDevice(cuda_ctx.Device());
*ellpack_->Impl() =
EllpackPageImpl(&cuda_ctx, *this->ghist_, this->Info().feature_types.ConstDeviceSpan());
}
}
CHECK(ellpack_);
auto begin_iter = BatchIterator<EllpackPage>(new SimpleBatchIteratorImpl<EllpackPage>(ellpack_));
return BatchSet<EllpackPage>(begin_iter);
}
void GetCutsFromEllpack(EllpackPage const& page, common::HistogramCuts* cuts) {
*cuts = page.Impl()->Cuts();
}
} // namespace xgboost::data