489 lines
18 KiB
Python
489 lines
18 KiB
Python
import sys
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from hypothesis import assume, given, settings, strategies
|
|
from xgboost.compat import PANDAS_INSTALLED
|
|
|
|
import xgboost as xgb
|
|
from xgboost import testing as tm
|
|
|
|
if PANDAS_INSTALLED:
|
|
from hypothesis.extra.pandas import column, data_frames, range_indexes
|
|
else:
|
|
def noop(*args, **kwargs):
|
|
pass
|
|
column, data_frames, range_indexes = noop, noop, noop
|
|
|
|
sys.path.append("tests/python")
|
|
from test_predict import run_predict_leaf # noqa
|
|
from test_predict import run_threaded_predict # noqa
|
|
|
|
rng = np.random.RandomState(1994)
|
|
|
|
shap_parameter_strategy = strategies.fixed_dictionaries({
|
|
'max_depth': strategies.integers(1, 11),
|
|
'max_leaves': strategies.integers(0, 256),
|
|
'num_parallel_tree': strategies.sampled_from([1, 10]),
|
|
}).filter(lambda x: x['max_depth'] > 0 or x['max_leaves'] > 0)
|
|
|
|
predict_parameter_strategy = strategies.fixed_dictionaries({
|
|
'max_depth': strategies.integers(1, 8),
|
|
'num_parallel_tree': strategies.sampled_from([1, 4]),
|
|
})
|
|
|
|
pytestmark = tm.timeout(20)
|
|
|
|
|
|
class TestGPUPredict:
|
|
def test_predict(self):
|
|
iterations = 10
|
|
np.random.seed(1)
|
|
test_num_rows = [10, 1000, 5000]
|
|
test_num_cols = [10, 50, 500]
|
|
# This test passes for tree_method=gpu_hist and tree_method=exact. but
|
|
# for `hist` and `approx` the floating point error accumulates faster
|
|
# and fails even tol is set to 1e-4. For `hist`, the mismatching rate
|
|
# with 5000 rows is 0.04.
|
|
for num_rows in test_num_rows:
|
|
for num_cols in test_num_cols:
|
|
dtrain = xgb.DMatrix(np.random.randn(num_rows, num_cols),
|
|
label=[0, 1] * int(num_rows / 2))
|
|
dval = xgb.DMatrix(np.random.randn(num_rows, num_cols),
|
|
label=[0, 1] * int(num_rows / 2))
|
|
dtest = xgb.DMatrix(np.random.randn(num_rows, num_cols),
|
|
label=[0, 1] * int(num_rows / 2))
|
|
watchlist = [(dtrain, 'train'), (dval, 'validation')]
|
|
res = {}
|
|
param = {
|
|
"objective": "binary:logistic",
|
|
"predictor": "gpu_predictor",
|
|
'eval_metric': 'logloss',
|
|
'tree_method': 'gpu_hist',
|
|
'max_depth': 1
|
|
}
|
|
bst = xgb.train(param, dtrain, iterations, evals=watchlist,
|
|
evals_result=res)
|
|
assert self.non_increasing(res["train"]["logloss"])
|
|
gpu_pred_train = bst.predict(dtrain, output_margin=True)
|
|
gpu_pred_test = bst.predict(dtest, output_margin=True)
|
|
gpu_pred_val = bst.predict(dval, output_margin=True)
|
|
|
|
param["predictor"] = "cpu_predictor"
|
|
bst_cpu = xgb.train(param, dtrain, iterations, evals=watchlist)
|
|
cpu_pred_train = bst_cpu.predict(dtrain, output_margin=True)
|
|
cpu_pred_test = bst_cpu.predict(dtest, output_margin=True)
|
|
cpu_pred_val = bst_cpu.predict(dval, output_margin=True)
|
|
|
|
np.testing.assert_allclose(cpu_pred_train, gpu_pred_train,
|
|
rtol=1e-6)
|
|
np.testing.assert_allclose(cpu_pred_val, gpu_pred_val,
|
|
rtol=1e-6)
|
|
np.testing.assert_allclose(cpu_pred_test, gpu_pred_test,
|
|
rtol=1e-6)
|
|
|
|
def non_increasing(self, L):
|
|
return all((y - x) < 0.001 for x, y in zip(L, L[1:]))
|
|
|
|
# Test case for a bug where multiple batch predictions made on a
|
|
# test set produce incorrect results
|
|
@pytest.mark.skipif(**tm.no_sklearn())
|
|
def test_multi_predict(self):
|
|
from sklearn.datasets import make_regression
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
n = 1000
|
|
X, y = make_regression(n, random_state=rng)
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y,
|
|
random_state=123)
|
|
dtrain = xgb.DMatrix(X_train, label=y_train)
|
|
dtest = xgb.DMatrix(X_test)
|
|
|
|
params = {}
|
|
params["tree_method"] = "gpu_hist"
|
|
|
|
params['predictor'] = "gpu_predictor"
|
|
bst_gpu_predict = xgb.train(params, dtrain)
|
|
|
|
params['predictor'] = "cpu_predictor"
|
|
bst_cpu_predict = xgb.train(params, dtrain)
|
|
|
|
predict0 = bst_gpu_predict.predict(dtest)
|
|
predict1 = bst_gpu_predict.predict(dtest)
|
|
cpu_predict = bst_cpu_predict.predict(dtest)
|
|
|
|
assert np.allclose(predict0, predict1)
|
|
assert np.allclose(predict0, cpu_predict)
|
|
|
|
@pytest.mark.skipif(**tm.no_sklearn())
|
|
def test_sklearn(self):
|
|
m, n = 15000, 14
|
|
tr_size = 2500
|
|
X = np.random.rand(m, n)
|
|
y = 200 * np.matmul(X, np.arange(-3, -3 + n))
|
|
X_train, y_train = X[:tr_size, :], y[:tr_size]
|
|
X_test, y_test = X[tr_size:, :], y[tr_size:]
|
|
|
|
# First with cpu_predictor
|
|
params = {'tree_method': 'gpu_hist',
|
|
'predictor': 'cpu_predictor',
|
|
'n_jobs': -1,
|
|
'seed': 123}
|
|
m = xgb.XGBRegressor(**params).fit(X_train, y_train)
|
|
cpu_train_score = m.score(X_train, y_train)
|
|
cpu_test_score = m.score(X_test, y_test)
|
|
|
|
# Now with gpu_predictor
|
|
params['predictor'] = 'gpu_predictor'
|
|
|
|
m = xgb.XGBRegressor(**params).fit(X_train, y_train)
|
|
gpu_train_score = m.score(X_train, y_train)
|
|
gpu_test_score = m.score(X_test, y_test)
|
|
|
|
assert np.allclose(cpu_train_score, gpu_train_score)
|
|
assert np.allclose(cpu_test_score, gpu_test_score)
|
|
|
|
def run_inplace_base_margin(self, booster, dtrain, X, base_margin):
|
|
import cupy as cp
|
|
dtrain.set_info(base_margin=base_margin)
|
|
from_inplace = booster.inplace_predict(data=X, base_margin=base_margin)
|
|
from_dmatrix = booster.predict(dtrain)
|
|
cp.testing.assert_allclose(from_inplace, from_dmatrix)
|
|
|
|
def run_inplace_predict_cupy(self, device: int) -> None:
|
|
import cupy as cp
|
|
cp.cuda.runtime.setDevice(device)
|
|
rows = 1000
|
|
cols = 10
|
|
missing = 11 # set to integer for testing
|
|
|
|
cp_rng = cp.random.RandomState(1994)
|
|
cp.random.set_random_state(cp_rng)
|
|
|
|
X = cp.random.randn(rows, cols)
|
|
missing_idx = [i for i in range(0, cols, 4)]
|
|
X[:, missing_idx] = missing # set to be missing
|
|
y = cp.random.randn(rows)
|
|
|
|
dtrain = xgb.DMatrix(X, y)
|
|
|
|
booster = xgb.train(
|
|
{'tree_method': 'gpu_hist', "gpu_id": device}, dtrain, num_boost_round=10
|
|
)
|
|
|
|
test = xgb.DMatrix(X[:10, ...], missing=missing)
|
|
predt_from_array = booster.inplace_predict(X[:10, ...], missing=missing)
|
|
predt_from_dmatrix = booster.predict(test)
|
|
cp.testing.assert_allclose(predt_from_array, predt_from_dmatrix)
|
|
|
|
def predict_dense(x):
|
|
cp.cuda.runtime.setDevice(device)
|
|
inplace_predt = booster.inplace_predict(x)
|
|
d = xgb.DMatrix(x)
|
|
copied_predt = cp.array(booster.predict(d))
|
|
return cp.all(copied_predt == inplace_predt)
|
|
|
|
# Don't do this on Windows, see issue #5793
|
|
if sys.platform.startswith("win"):
|
|
pytest.skip(
|
|
'Multi-threaded in-place prediction with cuPy is not working on Windows'
|
|
)
|
|
for i in range(10):
|
|
run_threaded_predict(X, rows, predict_dense)
|
|
|
|
base_margin = cp_rng.randn(rows)
|
|
self.run_inplace_base_margin(booster, dtrain, X, base_margin)
|
|
|
|
# Create a wide dataset
|
|
X = cp_rng.randn(100, 10000)
|
|
y = cp_rng.randn(100)
|
|
|
|
missing_idx = [i for i in range(0, X.shape[1], 16)]
|
|
X[:, missing_idx] = missing
|
|
reg = xgb.XGBRegressor(
|
|
tree_method="gpu_hist", n_estimators=8, missing=missing, gpu_id=device
|
|
)
|
|
reg.fit(X, y)
|
|
|
|
gpu_predt = reg.predict(X)
|
|
reg.set_params(predictor="cpu_predictor")
|
|
cpu_predt = reg.predict(X)
|
|
np.testing.assert_allclose(gpu_predt, cpu_predt, atol=1e-6)
|
|
cp.cuda.runtime.setDevice(0)
|
|
|
|
@pytest.mark.skipif(**tm.no_cupy())
|
|
def test_inplace_predict_cupy(self):
|
|
self.run_inplace_predict_cupy(0)
|
|
|
|
@pytest.mark.skipif(**tm.no_cupy())
|
|
@pytest.mark.mgpu
|
|
def test_inplace_predict_cupy_specified_device(self):
|
|
import cupy as cp
|
|
n_devices = cp.cuda.runtime.getDeviceCount()
|
|
for d in range(n_devices):
|
|
self.run_inplace_predict_cupy(d)
|
|
|
|
@pytest.mark.skipif(**tm.no_cupy())
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
def test_inplace_predict_cudf(self):
|
|
import cudf
|
|
import cupy as cp
|
|
import pandas as pd
|
|
rows = 1000
|
|
cols = 10
|
|
rng = np.random.RandomState(1994)
|
|
cp.cuda.runtime.setDevice(0)
|
|
X = rng.randn(rows, cols)
|
|
X = pd.DataFrame(X)
|
|
y = rng.randn(rows)
|
|
X = cudf.from_pandas(X)
|
|
|
|
dtrain = xgb.DMatrix(X, y)
|
|
|
|
booster = xgb.train({'tree_method': 'gpu_hist'},
|
|
dtrain, num_boost_round=10)
|
|
test = xgb.DMatrix(X)
|
|
predt_from_array = booster.inplace_predict(X)
|
|
predt_from_dmatrix = booster.predict(test)
|
|
|
|
cp.testing.assert_allclose(predt_from_array, predt_from_dmatrix)
|
|
|
|
def predict_df(x):
|
|
# column major array
|
|
inplace_predt = booster.inplace_predict(x.values)
|
|
d = xgb.DMatrix(x)
|
|
copied_predt = cp.array(booster.predict(d))
|
|
assert cp.all(copied_predt == inplace_predt)
|
|
|
|
inplace_predt = booster.inplace_predict(x)
|
|
return cp.all(copied_predt == inplace_predt)
|
|
|
|
for i in range(10):
|
|
run_threaded_predict(X, rows, predict_df)
|
|
|
|
base_margin = cudf.Series(rng.randn(rows))
|
|
self.run_inplace_base_margin(booster, dtrain, X, base_margin)
|
|
|
|
@given(strategies.integers(1, 10),
|
|
tm.dataset_strategy, shap_parameter_strategy)
|
|
@settings(deadline=None, max_examples=20, print_blob=True)
|
|
def test_shap(self, num_rounds, dataset, param):
|
|
if dataset.name.endswith("-l1"): # not supported by the exact tree method
|
|
return
|
|
param.update({"predictor": "gpu_predictor", "gpu_id": 0})
|
|
param = dataset.set_params(param)
|
|
dmat = dataset.get_dmat()
|
|
bst = xgb.train(param, dmat, num_rounds)
|
|
test_dmat = xgb.DMatrix(dataset.X, dataset.y, dataset.w, dataset.margin)
|
|
shap = bst.predict(test_dmat, pred_contribs=True)
|
|
margin = bst.predict(test_dmat, output_margin=True)
|
|
assume(len(dataset.y) > 0)
|
|
assert np.allclose(np.sum(shap, axis=len(shap.shape) - 1), margin, 1e-3, 1e-3)
|
|
|
|
@given(strategies.integers(1, 10),
|
|
tm.dataset_strategy, shap_parameter_strategy)
|
|
@settings(deadline=None, max_examples=10, print_blob=True)
|
|
def test_shap_interactions(self, num_rounds, dataset, param):
|
|
if dataset.name.endswith("-l1"): # not supported by the exact tree method
|
|
return
|
|
param.update({"predictor": "gpu_predictor", "gpu_id": 0})
|
|
param = dataset.set_params(param)
|
|
dmat = dataset.get_dmat()
|
|
bst = xgb.train(param, dmat, num_rounds)
|
|
test_dmat = xgb.DMatrix(dataset.X, dataset.y, dataset.w, dataset.margin)
|
|
shap = bst.predict(test_dmat, pred_interactions=True)
|
|
margin = bst.predict(test_dmat, output_margin=True)
|
|
assume(len(dataset.y) > 0)
|
|
assert np.allclose(np.sum(shap, axis=(len(shap.shape) - 1, len(shap.shape) - 2)),
|
|
margin,
|
|
1e-3, 1e-3)
|
|
|
|
def test_shap_categorical(self):
|
|
X, y = tm.make_categorical(100, 20, 7, False)
|
|
Xy = xgb.DMatrix(X, y, enable_categorical=True)
|
|
booster = xgb.train({"tree_method": "gpu_hist"}, Xy, num_boost_round=10)
|
|
|
|
booster.set_param({"predictor": "gpu_predictor"})
|
|
shap = booster.predict(Xy, pred_contribs=True)
|
|
margin = booster.predict(Xy, output_margin=True)
|
|
np.testing.assert_allclose(
|
|
np.sum(shap, axis=len(shap.shape) - 1), margin, rtol=1e-3
|
|
)
|
|
|
|
booster.set_param({"predictor": "cpu_predictor"})
|
|
shap = booster.predict(Xy, pred_contribs=True)
|
|
margin = booster.predict(Xy, output_margin=True)
|
|
np.testing.assert_allclose(
|
|
np.sum(shap, axis=len(shap.shape) - 1), margin, rtol=1e-3
|
|
)
|
|
|
|
def test_predict_leaf_basic(self):
|
|
gpu_leaf = run_predict_leaf('gpu_predictor')
|
|
cpu_leaf = run_predict_leaf('cpu_predictor')
|
|
np.testing.assert_equal(gpu_leaf, cpu_leaf)
|
|
|
|
def run_predict_leaf_booster(self, param, num_rounds, dataset):
|
|
param = dataset.set_params(param)
|
|
m = dataset.get_dmat()
|
|
booster = xgb.train(param, dtrain=dataset.get_dmat(), num_boost_round=num_rounds)
|
|
booster.set_param({'predictor': 'cpu_predictor'})
|
|
cpu_leaf = booster.predict(m, pred_leaf=True)
|
|
|
|
booster.set_param({'predictor': 'gpu_predictor'})
|
|
gpu_leaf = booster.predict(m, pred_leaf=True)
|
|
|
|
np.testing.assert_equal(cpu_leaf, gpu_leaf)
|
|
|
|
@given(predict_parameter_strategy, tm.dataset_strategy)
|
|
@settings(deadline=None, max_examples=20, print_blob=True)
|
|
def test_predict_leaf_gbtree(self, param, dataset):
|
|
# Unsupported for random forest
|
|
if param.get("num_parallel_tree", 1) > 1 and dataset.name.endswith("-l1"):
|
|
return
|
|
|
|
param['booster'] = 'gbtree'
|
|
param['tree_method'] = 'gpu_hist'
|
|
self.run_predict_leaf_booster(param, 10, dataset)
|
|
|
|
@given(predict_parameter_strategy, tm.dataset_strategy)
|
|
@settings(deadline=None, max_examples=20, print_blob=True)
|
|
def test_predict_leaf_dart(self, param: dict, dataset: tm.TestDataset) -> None:
|
|
# Unsupported for random forest
|
|
if param.get("num_parallel_tree", 1) > 1 and dataset.name.endswith("-l1"):
|
|
return
|
|
|
|
param['booster'] = 'dart'
|
|
param['tree_method'] = 'gpu_hist'
|
|
self.run_predict_leaf_booster(param, 10, dataset)
|
|
|
|
@pytest.mark.skipif(**tm.no_sklearn())
|
|
@pytest.mark.skipif(**tm.no_pandas())
|
|
@given(df=data_frames([column('x0', elements=strategies.integers(min_value=0, max_value=3)),
|
|
column('x1', elements=strategies.integers(min_value=0, max_value=5))],
|
|
index=range_indexes(min_size=20, max_size=50)))
|
|
@settings(deadline=None, max_examples=20, print_blob=True)
|
|
def test_predict_categorical_split(self, df):
|
|
from sklearn.metrics import mean_squared_error
|
|
|
|
df = df.astype('category')
|
|
x0, x1 = df['x0'].to_numpy(), df['x1'].to_numpy()
|
|
y = (x0 * 10 - 20) + (x1 - 2)
|
|
dtrain = xgb.DMatrix(df, label=y, enable_categorical=True)
|
|
|
|
params = {
|
|
'tree_method': 'gpu_hist', 'predictor': 'gpu_predictor',
|
|
'max_depth': 3, 'learning_rate': 1.0, 'base_score': 0.0, 'eval_metric': 'rmse'
|
|
}
|
|
|
|
eval_history = {}
|
|
bst = xgb.train(params, dtrain, num_boost_round=5, evals=[(dtrain, 'train')],
|
|
verbose_eval=False, evals_result=eval_history)
|
|
|
|
pred = bst.predict(dtrain)
|
|
rmse = mean_squared_error(y_true=y, y_pred=pred, squared=False)
|
|
np.testing.assert_almost_equal(rmse, eval_history['train']['rmse'][-1], decimal=5)
|
|
|
|
@pytest.mark.skipif(**tm.no_cupy())
|
|
@pytest.mark.parametrize("n_classes", [2, 3])
|
|
def test_predict_dart(self, n_classes):
|
|
import cupy as cp
|
|
from sklearn.datasets import make_classification
|
|
n_samples = 1000
|
|
X_, y_ = make_classification(
|
|
n_samples=n_samples, n_informative=5, n_classes=n_classes
|
|
)
|
|
X, y = cp.array(X_), cp.array(y_)
|
|
|
|
Xy = xgb.DMatrix(X, y)
|
|
if n_classes == 2:
|
|
params = {
|
|
"tree_method": "gpu_hist",
|
|
"booster": "dart",
|
|
"rate_drop": 0.5,
|
|
"objective": "binary:logistic"
|
|
}
|
|
else:
|
|
params = {
|
|
"tree_method": "gpu_hist",
|
|
"booster": "dart",
|
|
"rate_drop": 0.5,
|
|
"objective": "multi:softprob",
|
|
"num_class": n_classes
|
|
}
|
|
|
|
booster = xgb.train(params, Xy, num_boost_round=32)
|
|
# predictor=auto
|
|
inplace = booster.inplace_predict(X)
|
|
copied = booster.predict(Xy)
|
|
cpu_inplace = booster.inplace_predict(X_)
|
|
booster.set_param({"predictor": "cpu_predictor"})
|
|
cpu_copied = booster.predict(Xy)
|
|
|
|
copied = cp.array(copied)
|
|
cp.testing.assert_allclose(cpu_inplace, copied, atol=1e-6)
|
|
cp.testing.assert_allclose(cpu_copied, copied, atol=1e-6)
|
|
cp.testing.assert_allclose(inplace, copied, atol=1e-6)
|
|
|
|
booster.set_param({"predictor": "gpu_predictor"})
|
|
inplace = booster.inplace_predict(X)
|
|
copied = booster.predict(Xy)
|
|
|
|
copied = cp.array(copied)
|
|
cp.testing.assert_allclose(inplace, copied, atol=1e-6)
|
|
|
|
@pytest.mark.skipif(**tm.no_cupy())
|
|
def test_dtypes(self):
|
|
import cupy as cp
|
|
rows = 1000
|
|
cols = 10
|
|
rng = cp.random.RandomState(1994)
|
|
orig = rng.randint(low=0, high=127, size=rows * cols).reshape(
|
|
rows, cols
|
|
)
|
|
y = rng.randint(low=0, high=127, size=rows)
|
|
dtrain = xgb.DMatrix(orig, label=y)
|
|
booster = xgb.train({"tree_method": "gpu_hist"}, dtrain)
|
|
|
|
predt_orig = booster.inplace_predict(orig)
|
|
# all primitive types in numpy
|
|
for dtype in [
|
|
cp.signedinteger,
|
|
cp.byte,
|
|
cp.short,
|
|
cp.intc,
|
|
cp.int_,
|
|
cp.longlong,
|
|
cp.unsignedinteger,
|
|
cp.ubyte,
|
|
cp.ushort,
|
|
cp.uintc,
|
|
cp.uint,
|
|
cp.ulonglong,
|
|
cp.floating,
|
|
cp.half,
|
|
cp.single,
|
|
cp.double,
|
|
]:
|
|
X = cp.array(orig, dtype=dtype)
|
|
predt = booster.inplace_predict(X)
|
|
cp.testing.assert_allclose(predt, predt_orig)
|
|
|
|
# boolean
|
|
orig = cp.random.binomial(1, 0.5, size=rows * cols).reshape(
|
|
rows, cols
|
|
)
|
|
predt_orig = booster.inplace_predict(orig)
|
|
for dtype in [cp.bool8, cp.bool_]:
|
|
X = cp.array(orig, dtype=dtype)
|
|
predt = booster.inplace_predict(X)
|
|
cp.testing.assert_allclose(predt, predt_orig)
|
|
|
|
# unsupported types
|
|
for dtype in [
|
|
cp.complex64,
|
|
cp.complex128,
|
|
]:
|
|
X = cp.array(orig, dtype=dtype)
|
|
with pytest.raises(ValueError):
|
|
booster.inplace_predict(X)
|