Jiaming Yuan 663136aa08
Implement feature score for linear model. (#7048)
* Add feature score support for linear model.
* Port R interface to the new implementation.
* Add linear model support in Python.

Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2021-06-25 14:34:02 +08:00

114 lines
3.5 KiB
C++

/*!
* Copyright 2021 by Contributors
* \file linalg.h
* \brief Linear algebra related utilities.
*/
#ifndef XGBOOST_LINALG_H_
#define XGBOOST_LINALG_H_
#include <xgboost/span.h>
#include <xgboost/host_device_vector.h>
#include <xgboost/generic_parameters.h>
#include <array>
#include <algorithm>
#include <utility>
#include <vector>
namespace xgboost {
/*!
* \brief A view over a matrix on contiguous storage.
*
* \tparam T data type of matrix
*/
template <typename T> class MatrixView {
int32_t device_;
common::Span<T> values_;
size_t strides_[2];
size_t shape_[2];
template <typename Vec> static auto InferValues(Vec *vec, int32_t device) {
return device == GenericParameter::kCpuId ? vec->HostSpan()
: vec->DeviceSpan();
}
public:
/*!
* \param vec storage.
* \param strides Strides for matrix.
* \param shape Rows and columns.
* \param device Where the data is stored in.
*/
MatrixView(HostDeviceVector<T> *vec, std::array<size_t, 2> strides,
std::array<size_t, 2> shape, int32_t device)
: device_{device}, values_{InferValues(vec, device)} {
std::copy(strides.cbegin(), strides.cend(), strides_);
std::copy(shape.cbegin(), shape.cend(), shape_);
}
MatrixView(HostDeviceVector<std::remove_const_t<T>> const *vec,
std::array<size_t, 2> strides, std::array<size_t, 2> shape,
int32_t device)
: device_{device}, values_{InferValues(vec, device)} {
std::copy(strides.cbegin(), strides.cend(), strides_);
std::copy(shape.cbegin(), shape.cend(), shape_);
}
/*! \brief Row major constructor. */
MatrixView(HostDeviceVector<T> *vec, std::array<size_t, 2> shape,
int32_t device)
: device_{device}, values_{InferValues(vec, device)} {
std::copy(shape.cbegin(), shape.cend(), shape_);
strides_[0] = shape[1];
strides_[1] = 1;
}
MatrixView(std::vector<T> *vec, std::array<size_t, 2> shape)
: device_{GenericParameter::kCpuId}, values_{*vec} {
CHECK_EQ(vec->size(), shape[0] * shape[1]);
std::copy(shape.cbegin(), shape.cend(), shape_);
strides_[0] = shape[1];
strides_[1] = 1;
}
MatrixView(HostDeviceVector<std::remove_const_t<T>> const *vec,
std::array<size_t, 2> shape, int32_t device)
: device_{device}, values_{InferValues(vec, device)} {
std::copy(shape.cbegin(), shape.cend(), shape_);
strides_[0] = shape[1];
strides_[1] = 1;
}
XGBOOST_DEVICE T const &operator()(size_t r, size_t c) const {
return values_[strides_[0] * r + strides_[1] * c];
}
XGBOOST_DEVICE T &operator()(size_t r, size_t c) {
return values_[strides_[0] * r + strides_[1] * c];
}
auto Strides() const { return strides_; }
auto Shape() const { return shape_; }
auto Values() const { return values_; }
auto Size() const { return shape_[0] * shape_[1]; }
auto DeviceIdx() const { return device_; }
};
/*! \brief A slice for 1 column of MatrixView. Can be extended to row if needed. */
template <typename T> class VectorView {
MatrixView<T> matrix_;
size_t column_;
public:
explicit VectorView(MatrixView<T> matrix, size_t column)
: matrix_{std::move(matrix)}, column_{column} {}
XGBOOST_DEVICE T &operator[](size_t i) {
return matrix_(i, column_);
}
XGBOOST_DEVICE T const &operator[](size_t i) const {
return matrix_(i, column_);
}
size_t Size() { return matrix_.Shape()[0]; }
int32_t DeviceIdx() const { return matrix_.DeviceIdx(); }
};
} // namespace xgboost
#endif // XGBOOST_LINALG_H_