AbdealiJK 6f16f0ef58 Use bst_float consistently throughout (#1824)
* Fix various typos

* Add override to functions that are overridden

gcc gives warnings about functions that are being overridden by not
being marked as oveirridden. This fixes it.

* Use bst_float consistently

Use bst_float for all the variables that involve weight,
leaf value, gradient, hessian, gain, loss_chg, predictions,
base_margin, feature values.

In some cases, when due to additions and so on the value can
take a larger value, double is used.

This ensures that type conversions are minimal and reduces loss of
precision.
2016-11-30 10:02:10 -08:00

373 lines
12 KiB
C++

/*!
* Copyright (c) 2015 by Contributors
* \file data.h
* \brief The input data structure of xgboost.
* \author Tianqi Chen
*/
#ifndef XGBOOST_DATA_H_
#define XGBOOST_DATA_H_
#include <dmlc/base.h>
#include <dmlc/data.h>
#include <string>
#include <memory>
#include <vector>
#include "./base.h"
namespace xgboost {
// forward declare learner.
class LearnerImpl;
/*! \brief data type accepted by xgboost interface */
enum DataType {
kFloat32 = 1,
kDouble = 2,
kUInt32 = 3,
kUInt64 = 4
};
/*!
* \brief Meta information about dataset, always sit in memory.
*/
struct MetaInfo {
/*! \brief number of rows in the data */
uint64_t num_row;
/*! \brief number of columns in the data */
uint64_t num_col;
/*! \brief number of nonzero entries in the data */
uint64_t num_nonzero;
/*! \brief label of each instance */
std::vector<bst_float> labels;
/*!
* \brief specified root index of each instance,
* can be used for multi task setting
*/
std::vector<bst_uint> root_index;
/*!
* \brief the index of begin and end of a group
* needed when the learning task is ranking.
*/
std::vector<bst_uint> group_ptr;
/*! \brief weights of each instance, optional */
std::vector<bst_float> weights;
/*!
* \brief initialized margins,
* if specified, xgboost will start from this init margin
* can be used to specify initial prediction to boost from.
*/
std::vector<bst_float> base_margin;
/*! \brief version flag, used to check version of this info */
static const int kVersion = 1;
/*! \brief default constructor */
MetaInfo() : num_row(0), num_col(0), num_nonzero(0) {}
/*!
* \brief Get weight of each instances.
* \param i Instance index.
* \return The weight.
*/
inline bst_float GetWeight(size_t i) const {
return weights.size() != 0 ? weights[i] : 1.0f;
}
/*!
* \brief Get the root index of i-th instance.
* \param i Instance index.
* \return The pre-defined root index of i-th instance.
*/
inline unsigned GetRoot(size_t i) const {
return root_index.size() != 0 ? root_index[i] : 0U;
}
/*! \brief clear all the information */
void Clear();
/*!
* \brief Load the Meta info from binary stream.
* \param fi The input stream
*/
void LoadBinary(dmlc::Stream* fi);
/*!
* \brief Save the Meta info to binary stream
* \param fo The output stream.
*/
void SaveBinary(dmlc::Stream* fo) const;
/*!
* \brief Set information in the meta info.
* \param key The key of the information.
* \param dptr The data pointer of the source array.
* \param dtype The type of the source data.
* \param num Number of elements in the source array.
*/
void SetInfo(const char* key, const void* dptr, DataType dtype, size_t num);
};
/*! \brief read-only sparse instance batch in CSR format */
struct SparseBatch {
/*! \brief an entry of sparse vector */
struct Entry {
/*! \brief feature index */
bst_uint index;
/*! \brief feature value */
bst_float fvalue;
/*! \brief default constructor */
Entry() {}
/*!
* \brief constructor with index and value
* \param index The feature or row index.
* \param fvalue THe feature value.
*/
Entry(bst_uint index, bst_float fvalue) : index(index), fvalue(fvalue) {}
/*! \brief reversely compare feature values */
inline static bool CmpValue(const Entry& a, const Entry& b) {
return a.fvalue < b.fvalue;
}
};
/*! \brief an instance of sparse vector in the batch */
struct Inst {
/*! \brief pointer to the elements*/
const Entry *data;
/*! \brief length of the instance */
bst_uint length;
/*! \brief constructor */
Inst(const Entry *data, bst_uint length) : data(data), length(length) {}
/*! \brief get i-th pair in the sparse vector*/
inline const Entry& operator[](size_t i) const {
return data[i];
}
};
/*! \brief batch size */
size_t size;
};
/*! \brief read-only row batch, used to access row continuously */
struct RowBatch : public SparseBatch {
/*! \brief the offset of rowid of this batch */
size_t base_rowid;
/*! \brief array[size+1], row pointer of each of the elements */
const size_t *ind_ptr;
/*! \brief array[ind_ptr.back()], content of the sparse element */
const Entry *data_ptr;
/*! \brief get i-th row from the batch */
inline Inst operator[](size_t i) const {
return Inst(data_ptr + ind_ptr[i], static_cast<bst_uint>(ind_ptr[i + 1] - ind_ptr[i]));
}
};
/*!
* \brief read-only column batch, used to access columns,
* the columns are not required to be continuous
*/
struct ColBatch : public SparseBatch {
/*! \brief column index of each columns in the data */
const bst_uint *col_index;
/*! \brief pointer to the column data */
const Inst *col_data;
/*! \brief get i-th column from the batch */
inline Inst operator[](size_t i) const {
return col_data[i];
}
};
/*!
* \brief This is data structure that user can pass to DMatrix::Create
* to create a DMatrix for training, user can create this data structure
* for customized Data Loading on single machine.
*
* On distributed setting, usually an customized dmlc::Parser is needed instead.
*/
class DataSource : public dmlc::DataIter<RowBatch> {
public:
/*!
* \brief Meta information about the dataset
* The subclass need to be able to load this correctly from data.
*/
MetaInfo info;
};
/*!
* \brief A vector-like structure to represent set of rows.
* But saves the memory when all rows are in the set (common case in xgb)
*/
struct RowSet {
public:
/*! \return i-th row index */
inline bst_uint operator[](size_t i) const;
/*! \return the size of the set. */
inline size_t size() const;
/*! \brief push the index back to the set */
inline void push_back(bst_uint i);
/*! \brief clear the set */
inline void clear();
/*!
* \brief save rowset to file.
* \param fo The file to be saved.
*/
inline void Save(dmlc::Stream* fo) const;
/*!
* \brief Load rowset from file.
* \param fi The file to be loaded.
* \return if read is successful.
*/
inline bool Load(dmlc::Stream* fi);
/*! \brief constructor */
RowSet() : size_(0) {}
private:
/*! \brief The internal data structure of size */
uint64_t size_;
/*! \brief The internal data structure of row set if not all*/
std::vector<bst_uint> rows_;
};
/*!
* \brief Internal data structured used by XGBoost during training.
* There are two ways to create a customized DMatrix that reads in user defined-format.
*
* - Provide a dmlc::Parser and pass into the DMatrix::Create
* - Alternatively, if data can be represented by an URL, define a new dmlc::Parser and register by DMLC_REGISTER_DATA_PARSER;
* - This works best for user defined data input source, such as data-base, filesystem.
* - Provide a DataSource, that can be passed to DMatrix::Create
* This can be used to re-use inmemory data structure into DMatrix.
*/
class DMatrix {
public:
/*! \brief default constructor */
DMatrix() : cache_learner_ptr_(nullptr) {}
/*! \brief meta information of the dataset */
virtual MetaInfo& info() = 0;
/*! \brief meta information of the dataset */
virtual const MetaInfo& info() const = 0;
/*!
* \brief get the row iterator, reset to beginning position
* \note Only either RowIterator or column Iterator can be active.
*/
virtual dmlc::DataIter<RowBatch>* RowIterator() = 0;
/*!\brief get column iterator, reset to the beginning position */
virtual dmlc::DataIter<ColBatch>* ColIterator() = 0;
/*!
* \brief get the column iterator associated with subset of column features.
* \param fset is the list of column index set that must be contained in the returning Column iterator
* \return the column iterator, initialized so that it reads the elements in fset
*/
virtual dmlc::DataIter<ColBatch>* ColIterator(const std::vector<bst_uint>& fset) = 0;
/*!
* \brief check if column access is supported, if not, initialize column access.
* \param enabled whether certain feature should be included in column access.
* \param subsample subsample ratio when generating column access.
* \param max_row_perbatch auxiliary information, maximum row used in each column batch.
* this is a hint information that can be ignored by the implementation.
* \return Number of column blocks in the column access.
*/
virtual void InitColAccess(const std::vector<bool>& enabled,
float subsample,
size_t max_row_perbatch) = 0;
// the following are column meta data, should be able to answer them fast.
/*! \return whether column access is enabled */
virtual bool HaveColAccess() const = 0;
/*! \return Whether the data columns single column block. */
virtual bool SingleColBlock() const = 0;
/*! \brief get number of non-missing entries in column */
virtual size_t GetColSize(size_t cidx) const = 0;
/*! \brief get column density */
virtual float GetColDensity(size_t cidx) const = 0;
/*! \return reference of buffered rowset, in column access */
virtual const RowSet& buffered_rowset() const = 0;
/*! \brief virtual destructor */
virtual ~DMatrix() {}
/*!
* \brief Save DMatrix to local file.
* The saved file only works for non-sharded dataset(single machine training).
* This API is deprecated and dis-encouraged to use.
* \param fname The file name to be saved.
* \return The created DMatrix.
*/
virtual void SaveToLocalFile(const std::string& fname);
/*!
* \brief Load DMatrix from URI.
* \param uri The URI of input.
* \param silent Whether print information during loading.
* \param load_row_split Flag to read in part of rows, divided among the workers in distributed mode.
* \param file_format The format type of the file, used for dmlc::Parser::Create.
* By default "auto" will be able to load in both local binary file.
* \return The created DMatrix.
*/
static DMatrix* Load(const std::string& uri,
bool silent,
bool load_row_split,
const std::string& file_format = "auto");
/*!
* \brief create a new DMatrix, by wrapping a row_iterator, and meta info.
* \param source The source iterator of the data, the create function takes ownership of the source.
* \param cache_prefix The path to prefix of temporary cache file of the DMatrix when used in external memory mode.
* This can be nullptr for common cases, and in-memory mode will be used.
* \return a Created DMatrix.
*/
static DMatrix* Create(std::unique_ptr<DataSource>&& source,
const std::string& cache_prefix = "");
/*!
* \brief Create a DMatrix by loading data from parser.
* Parser can later be deleted after the DMatrix i created.
* \param parser The input data parser
* \param cache_prefix The path to prefix of temporary cache file of the DMatrix when used in external memory mode.
* This can be nullptr for common cases, and in-memory mode will be used.
* \sa dmlc::Parser
* \note dmlc-core provides efficient distributed data parser for libsvm format.
* User can create and register customized parser to load their own format using DMLC_REGISTER_DATA_PARSER.
* See "dmlc-core/include/dmlc/data.h" for detail.
* \return A created DMatrix.
*/
static DMatrix* Create(dmlc::Parser<uint32_t>* parser,
const std::string& cache_prefix = "");
private:
// allow learner class to access this field.
friend class LearnerImpl;
/*! \brief public field to back ref cached matrix. */
LearnerImpl* cache_learner_ptr_;
};
// implementation of inline functions
inline bst_uint RowSet::operator[](size_t i) const {
return rows_.size() == 0 ? i : rows_[i];
}
inline size_t RowSet::size() const {
return size_;
}
inline void RowSet::clear() {
rows_.clear(); size_ = 0;
}
inline void RowSet::push_back(bst_uint i) {
if (rows_.size() == 0) {
if (i == size_) {
++size_; return;
} else {
rows_.resize(size_);
for (size_t i = 0; i < size_; ++i) {
rows_[i] = static_cast<bst_uint>(i);
}
}
}
rows_.push_back(i);
++size_;
}
inline void RowSet::Save(dmlc::Stream* fo) const {
fo->Write(rows_);
fo->Write(&size_, sizeof(size_));
}
inline bool RowSet::Load(dmlc::Stream* fi) {
if (!fi->Read(&rows_)) return false;
if (rows_.size() != 0) return true;
return fi->Read(&size_, sizeof(size_)) == sizeof(size_);
}
} // namespace xgboost
namespace dmlc {
DMLC_DECLARE_TRAITS(is_pod, xgboost::SparseBatch::Entry, true);
DMLC_DECLARE_TRAITS(has_saveload, xgboost::RowSet, true);
}
#endif // XGBOOST_DATA_H_