xgboost/src/data/gradient_index.cc
Jiaming Yuan 2775c2a1ab
Prepare external memory support for hist. (#7638)
This PR prepares the GHistIndexMatrix to host the column matrix which is used by the hist tree method by accepting sparse_threshold parameter.

Some cleanups are made to ensure the correct batch param is being passed into DMatrix along with some additional tests for correctness of SimpleDMatrix.
2022-02-10 16:58:02 +08:00

210 lines
7.4 KiB
C++

/*!
* Copyright 2017-2022 by XGBoost Contributors
* \brief Data type for fast histogram aggregation.
*/
#include "gradient_index.h"
#include <algorithm>
#include <limits>
#include <memory>
#include "../common/column_matrix.h"
#include "../common/hist_util.h"
namespace xgboost {
GHistIndexMatrix::GHistIndexMatrix() : columns_{std::make_unique<common::ColumnMatrix>()} {}
GHistIndexMatrix::GHistIndexMatrix(DMatrix *x, int32_t max_bin, double sparse_thresh,
bool sorted_sketch, int32_t n_threads,
common::Span<float> hess) {
this->Init(x, max_bin, sparse_thresh, sorted_sketch, n_threads, hess);
}
GHistIndexMatrix::~GHistIndexMatrix() = default;
void GHistIndexMatrix::PushBatch(SparsePage const &batch,
common::Span<FeatureType const> ft,
size_t rbegin, size_t prev_sum, uint32_t nbins,
int32_t n_threads) {
// The number of threads is pegged to the batch size. If the OMP
// block is parallelized on anything other than the batch/block size,
// it should be reassigned
const size_t batch_threads =
std::max(static_cast<size_t>(1), std::min(batch.Size(), static_cast<size_t>(n_threads)));
auto page = batch.GetView();
common::MemStackAllocator<size_t, 128> partial_sums(batch_threads);
size_t *p_part = partial_sums.Get();
size_t block_size = batch.Size() / batch_threads;
dmlc::OMPException exc;
#pragma omp parallel num_threads(batch_threads)
{
#pragma omp for
for (omp_ulong tid = 0; tid < batch_threads; ++tid) {
exc.Run([&]() {
size_t ibegin = block_size * tid;
size_t iend = (tid == (batch_threads - 1) ? batch.Size()
: (block_size * (tid + 1)));
size_t sum = 0;
for (size_t i = ibegin; i < iend; ++i) {
sum += page[i].size();
row_ptr[rbegin + 1 + i] = sum;
}
});
}
#pragma omp single
{
exc.Run([&]() {
p_part[0] = prev_sum;
for (size_t i = 1; i < batch_threads; ++i) {
p_part[i] = p_part[i - 1] + row_ptr[rbegin + i * block_size];
}
});
}
#pragma omp for
for (omp_ulong tid = 0; tid < batch_threads; ++tid) {
exc.Run([&]() {
size_t ibegin = block_size * tid;
size_t iend = (tid == (batch_threads - 1) ? batch.Size()
: (block_size * (tid + 1)));
for (size_t i = ibegin; i < iend; ++i) {
row_ptr[rbegin + 1 + i] += p_part[tid];
}
});
}
}
exc.Rethrow();
const size_t n_offsets = cut.Ptrs().size() - 1;
const size_t n_index = row_ptr[rbegin + batch.Size()];
ResizeIndex(n_index, isDense_);
CHECK_GT(cut.Values().size(), 0U);
uint32_t *offsets = nullptr;
if (isDense_) {
index.ResizeOffset(n_offsets);
offsets = index.Offset();
for (size_t i = 0; i < n_offsets; ++i) {
offsets[i] = cut.Ptrs()[i];
}
}
if (isDense_) {
common::BinTypeSize curent_bin_size = index.GetBinTypeSize();
if (curent_bin_size == common::kUint8BinsTypeSize) {
common::Span<uint8_t> index_data_span = {index.data<uint8_t>(), n_index};
SetIndexData(index_data_span, ft, batch_threads, batch, rbegin, nbins,
[offsets](auto idx, auto j) {
return static_cast<uint8_t>(idx - offsets[j]);
});
} else if (curent_bin_size == common::kUint16BinsTypeSize) {
common::Span<uint16_t> index_data_span = {index.data<uint16_t>(), n_index};
SetIndexData(index_data_span, ft, batch_threads, batch, rbegin, nbins,
[offsets](auto idx, auto j) {
return static_cast<uint16_t>(idx - offsets[j]);
});
} else {
CHECK_EQ(curent_bin_size, common::kUint32BinsTypeSize);
common::Span<uint32_t> index_data_span = {index.data<uint32_t>(), n_index};
SetIndexData(index_data_span, ft, batch_threads, batch, rbegin, nbins,
[offsets](auto idx, auto j) {
return static_cast<uint32_t>(idx - offsets[j]);
});
}
/* For sparse DMatrix we have to store index of feature for each bin
in index field to chose right offset. So offset is nullptr and index is
not reduced */
} else {
common::Span<uint32_t> index_data_span = {index.data<uint32_t>(), n_index};
SetIndexData(index_data_span, ft, batch_threads, batch, rbegin, nbins,
[](auto idx, auto) { return idx; });
}
common::ParallelFor(nbins, n_threads, [&](bst_omp_uint idx) {
for (int32_t tid = 0; tid < n_threads; ++tid) {
hit_count[idx] += hit_count_tloc_[tid * nbins + idx];
hit_count_tloc_[tid * nbins + idx] = 0; // reset for next batch
}
});
}
void GHistIndexMatrix::Init(DMatrix *p_fmat, int max_bins, double sparse_thresh, bool sorted_sketch,
int32_t n_threads, common::Span<float> hess) {
// We use sorted sketching for approx tree method since it's more efficient in
// computation time (but higher memory usage).
cut = common::SketchOnDMatrix(p_fmat, max_bins, n_threads, sorted_sketch, hess);
max_num_bins = max_bins;
const uint32_t nbins = cut.Ptrs().back();
hit_count.resize(nbins, 0);
hit_count_tloc_.resize(n_threads * nbins, 0);
this->p_fmat = p_fmat;
size_t new_size = 1;
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
new_size += batch.Size();
}
row_ptr.resize(new_size);
row_ptr[0] = 0;
size_t rbegin = 0;
size_t prev_sum = 0;
const bool isDense = p_fmat->IsDense();
this->isDense_ = isDense;
auto ft = p_fmat->Info().feature_types.ConstHostSpan();
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
this->PushBatch(batch, ft, rbegin, prev_sum, nbins, n_threads);
prev_sum = row_ptr[rbegin + batch.Size()];
rbegin += batch.Size();
}
}
void GHistIndexMatrix::Init(SparsePage const &batch, common::Span<FeatureType const> ft,
common::HistogramCuts const &cuts, int32_t max_bins_per_feat,
bool isDense, double sparse_thresh, int32_t n_threads) {
CHECK_GE(n_threads, 1);
base_rowid = batch.base_rowid;
isDense_ = isDense;
cut = cuts;
max_num_bins = max_bins_per_feat;
CHECK_EQ(row_ptr.size(), 0);
// The number of threads is pegged to the batch size. If the OMP
// block is parallelized on anything other than the batch/block size,
// it should be reassigned
row_ptr.resize(batch.Size() + 1, 0);
const uint32_t nbins = cut.Ptrs().back();
hit_count.resize(nbins, 0);
hit_count_tloc_.resize(n_threads * nbins, 0);
size_t rbegin = 0;
size_t prev_sum = 0;
this->PushBatch(batch, ft, rbegin, prev_sum, nbins, n_threads);
}
void GHistIndexMatrix::ResizeIndex(const size_t n_index, const bool isDense) {
if ((max_num_bins - 1 <= static_cast<int>(std::numeric_limits<uint8_t>::max())) && isDense) {
index.SetBinTypeSize(common::kUint8BinsTypeSize);
index.Resize((sizeof(uint8_t)) * n_index);
} else if ((max_num_bins - 1 > static_cast<int>(std::numeric_limits<uint8_t>::max()) &&
max_num_bins - 1 <= static_cast<int>(std::numeric_limits<uint16_t>::max())) &&
isDense) {
index.SetBinTypeSize(common::kUint16BinsTypeSize);
index.Resize((sizeof(uint16_t)) * n_index);
} else {
index.SetBinTypeSize(common::kUint32BinsTypeSize);
index.Resize((sizeof(uint32_t)) * n_index);
}
}
} // namespace xgboost