178 lines
5.1 KiB
C++
178 lines
5.1 KiB
C++
/*!
|
|
* Copyright 2015 by Contributors
|
|
* \file random.h
|
|
* \brief Utility related to random.
|
|
* \author Tianqi Chen
|
|
*/
|
|
#ifndef XGBOOST_COMMON_RANDOM_H_
|
|
#define XGBOOST_COMMON_RANDOM_H_
|
|
|
|
#include <rabit/rabit.h>
|
|
#include <xgboost/logging.h>
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <numeric>
|
|
#include <random>
|
|
|
|
#include "io.h"
|
|
|
|
namespace xgboost {
|
|
namespace common {
|
|
/*!
|
|
* \brief Define mt19937 as default type Random Engine.
|
|
*/
|
|
using RandomEngine = std::mt19937;
|
|
|
|
#if XGBOOST_CUSTOMIZE_GLOBAL_PRNG
|
|
/*!
|
|
* \brief An customized random engine, used to be plugged in PRNG from other systems.
|
|
* The implementation of this library is not provided by xgboost core library.
|
|
* Instead the other library can implement this class, which will be used as GlobalRandomEngine
|
|
* If XGBOOST_RANDOM_CUSTOMIZE = 1, by default this is switched off.
|
|
*/
|
|
class CustomGlobalRandomEngine {
|
|
public:
|
|
/*! \brief The result type */
|
|
using result_type = uint32_t;
|
|
/*! \brief The minimum of random numbers generated */
|
|
inline static constexpr result_type min() {
|
|
return 0;
|
|
}
|
|
/*! \brief The maximum random numbers generated */
|
|
inline static constexpr result_type max() {
|
|
return std::numeric_limits<result_type>::max();
|
|
}
|
|
/*!
|
|
* \brief seed function, to be implemented
|
|
* \param val The value of the seed.
|
|
*/
|
|
void seed(result_type val);
|
|
/*!
|
|
* \return next random number.
|
|
*/
|
|
result_type operator()();
|
|
};
|
|
|
|
/*!
|
|
* \brief global random engine
|
|
*/
|
|
typedef CustomGlobalRandomEngine GlobalRandomEngine;
|
|
|
|
#else
|
|
/*!
|
|
* \brief global random engine
|
|
*/
|
|
using GlobalRandomEngine = RandomEngine;
|
|
#endif // XGBOOST_CUSTOMIZE_GLOBAL_PRNG
|
|
|
|
/*!
|
|
* \brief global singleton of a random engine.
|
|
* This random engine is thread-local and
|
|
* only visible to current thread.
|
|
*/
|
|
GlobalRandomEngine& GlobalRandom(); // NOLINT(*)
|
|
|
|
/**
|
|
* \class ColumnSampler
|
|
*
|
|
* \brief Handles selection of columns due to colsample_bytree, colsample_bylevel and
|
|
* colsample_bynode parameters. Should be initialised before tree construction and to
|
|
* reset when tree construction is completed.
|
|
*/
|
|
|
|
class ColumnSampler {
|
|
std::shared_ptr<std::vector<int>> feature_set_tree_;
|
|
std::map<int, std::shared_ptr<std::vector<int>>> feature_set_level_;
|
|
float colsample_bylevel_{1.0f};
|
|
float colsample_bytree_{1.0f};
|
|
float colsample_bynode_{1.0f};
|
|
|
|
std::shared_ptr<std::vector<int>> ColSample
|
|
(std::shared_ptr<std::vector<int>> p_features, float colsample) const {
|
|
if (colsample == 1.0f) return p_features;
|
|
const auto& features = *p_features;
|
|
CHECK_GT(features.size(), 0);
|
|
int n = std::max(1, static_cast<int>(colsample * features.size()));
|
|
auto p_new_features = std::make_shared<std::vector<int>>();
|
|
auto& new_features = *p_new_features;
|
|
new_features.resize(features.size());
|
|
std::copy(features.begin(), features.end(), new_features.begin());
|
|
std::shuffle(new_features.begin(), new_features.end(), common::GlobalRandom());
|
|
new_features.resize(n);
|
|
std::sort(new_features.begin(), new_features.end());
|
|
|
|
// ensure that new_features are the same across ranks
|
|
rabit::Broadcast(&new_features, 0);
|
|
|
|
return p_new_features;
|
|
}
|
|
|
|
public:
|
|
/**
|
|
* \brief Initialise this object before use.
|
|
*
|
|
* \param num_col
|
|
* \param colsample_bynode
|
|
* \param colsample_bylevel
|
|
* \param colsample_bytree
|
|
* \param skip_index_0 (Optional) True to skip index 0.
|
|
*/
|
|
void Init(int64_t num_col, float colsample_bynode, float colsample_bylevel,
|
|
float colsample_bytree, bool skip_index_0 = false) {
|
|
colsample_bylevel_ = colsample_bylevel;
|
|
colsample_bytree_ = colsample_bytree;
|
|
colsample_bynode_ = colsample_bynode;
|
|
|
|
if (feature_set_tree_ == nullptr) {
|
|
feature_set_tree_ = std::make_shared<std::vector<int>>();
|
|
}
|
|
Reset();
|
|
|
|
int begin_idx = skip_index_0 ? 1 : 0;
|
|
feature_set_tree_->resize(num_col - begin_idx);
|
|
std::iota(feature_set_tree_->begin(), feature_set_tree_->end(), begin_idx);
|
|
|
|
feature_set_tree_ = ColSample(feature_set_tree_, colsample_bytree_);
|
|
}
|
|
|
|
/**
|
|
* \brief Resets this object.
|
|
*/
|
|
void Reset() {
|
|
feature_set_tree_->clear();
|
|
feature_set_level_.clear();
|
|
}
|
|
|
|
/**
|
|
* \brief Samples a feature set.
|
|
*
|
|
* \param depth The tree depth of the node at which to sample.
|
|
* \return The sampled feature set.
|
|
* \note If colsample_bynode_ < 1.0, this method creates a new feature set each time it
|
|
* is called. Therefore, it should be called only once per node.
|
|
*/
|
|
std::shared_ptr<std::vector<int>> GetFeatureSet(int depth) {
|
|
if (colsample_bylevel_ == 1.0f && colsample_bynode_ == 1.0f) {
|
|
return feature_set_tree_;
|
|
}
|
|
|
|
if (feature_set_level_.count(depth) == 0) {
|
|
// Level sampling, level does not yet exist so generate it
|
|
feature_set_level_[depth] = ColSample(feature_set_tree_, colsample_bylevel_);
|
|
}
|
|
if (colsample_bynode_ == 1.0f) {
|
|
// Level sampling
|
|
return feature_set_level_[depth];
|
|
}
|
|
// Need to sample for the node individually
|
|
return ColSample(feature_set_level_[depth], colsample_bynode_);
|
|
}
|
|
};
|
|
|
|
} // namespace common
|
|
} // namespace xgboost
|
|
#endif // XGBOOST_COMMON_RANDOM_H_
|