xgboost/R-package/man/xgboost.Rd

53 lines
1.7 KiB
R

% Generated by roxygen2 (4.0.1): do not edit by hand
\name{xgboost}
\alias{xgboost}
\title{eXtreme Gradient Boosting (Tree) library}
\usage{
xgboost(data = NULL, label = NULL, params = list(), nrounds,
verbose = 1, ...)
}
\arguments{
\item{data}{takes \code{matrix}, \code{dgCMatrix}, local data file or
\code{xgb.DMatrix}.}
\item{label}{the response variable. User should not set this field,}
\item{params}{the list of parameters. Commonly used ones are:
\itemize{
\item \code{objective} objective function, common ones are
\itemize{
\item \code{reg:linear} linear regression
\item \code{binary:logistic} logistic regression for classification
}
\item \code{eta} step size of each boosting step
\item \code{max_depth} maximum depth of the tree
\item \code{nthread} number of thread used in training, if not set, all threads are used
}
See \url{https://github.com/tqchen/xgboost/wiki/Parameters} for
further details. See also inst/examples/demo.R for walkthrough example in R.}
\item{nrounds}{the max number of iterations}
\item{verbose}{If 0, xgboost will stay silent. If 1, xgboost will print
information of performance. If 2, xgboost will print information of both
performance and construction progress information}
\item{...}{other parameters to pass to \code{params}.}
}
\description{
A simple interface for xgboost in R
}
\details{
This is the modeling function for xgboost.
Parallelization is automatically enabled if OpenMP is present.
Number of threads can also be manually specified via "nthread" parameter
}
\examples{
data(iris)
bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]), nrounds = 2)
pred <- predict(bst, as.matrix(iris[,1:4]))
}