xgboost/tests/python-gpu/test_from_cupy.py
2020-01-26 11:53:07 +13:00

101 lines
3.6 KiB
Python

import numpy as np
import xgboost as xgb
import sys
import pytest
sys.path.append("tests/python")
import testing as tm
def dmatrix_from_cupy(input_type, missing=np.NAN):
'''Test constructing DMatrix from cupy'''
import cupy as cp
kRows = 80
kCols = 3
np_X = np.random.randn(kRows, kCols).astype(dtype=input_type)
X = cp.array(np_X)
X[5, 0] = missing
X[3, 1] = missing
y = cp.random.randn(kRows).astype(dtype=input_type)
dtrain = xgb.DMatrix(X, missing=missing, label=y)
assert dtrain.num_col() == kCols
assert dtrain.num_row() == kRows
return dtrain
class TestFromArrayInterface:
'''Tests for constructing DMatrix from data structure conforming Apache
Arrow specification.'''
@pytest.mark.skipif(**tm.no_cupy())
def test_from_cupy(self):
'''Test constructing DMatrix from cupy'''
import cupy as cp
dmatrix_from_cupy(np.float32, np.NAN)
dmatrix_from_cupy(np.float64, np.NAN)
dmatrix_from_cupy(np.uint8, 2)
dmatrix_from_cupy(np.uint32, 3)
dmatrix_from_cupy(np.uint64, 4)
dmatrix_from_cupy(np.int8, 2)
dmatrix_from_cupy(np.int32, -2)
dmatrix_from_cupy(np.int64, -3)
with pytest.raises(Exception):
X = cp.random.randn(2, 2, dtype="float32")
dtrain = xgb.DMatrix(X, label=X)
@pytest.mark.skipif(**tm.no_cupy())
def test_cupy_training(self):
import cupy as cp
np.random.seed(1)
cp.random.seed(1)
X = cp.random.randn(50, 10, dtype="float32")
y = cp.random.randn(50, dtype="float32")
weights = np.random.random(50) + 1
cupy_weights = cp.array(weights)
base_margin = np.random.random(50)
cupy_base_margin = cp.array(base_margin)
evals_result_cupy = {}
dtrain_cp = xgb.DMatrix(X, y, weight=cupy_weights, base_margin=cupy_base_margin)
params = {'gpu_id': 0, 'nthread': 1}
xgb.train(params, dtrain_cp, evals=[(dtrain_cp, "train")],
evals_result=evals_result_cupy)
evals_result_np = {}
dtrain_np = xgb.DMatrix(cp.asnumpy(X), cp.asnumpy(y), weight=weights,
base_margin=base_margin)
xgb.train(params, dtrain_np, evals=[(dtrain_np, "train")],
evals_result=evals_result_np)
assert np.array_equal(evals_result_cupy["train"]["rmse"], evals_result_np["train"]["rmse"])
@pytest.mark.skipif(**tm.no_cupy())
def test_cupy_metainfo(self):
import cupy as cp
n = 100
X = np.random.random((n, 2))
dmat_cupy = xgb.DMatrix(X)
dmat = xgb.DMatrix(X)
floats = np.random.random(n)
uints = np.array([4, 2, 8]).astype("uint32")
cupy_floats = cp.array(floats)
cupy_uints = cp.array(uints)
dmat.set_float_info('weight', floats)
dmat.set_float_info('label', floats)
dmat.set_float_info('base_margin', floats)
dmat.set_uint_info('group', uints)
dmat_cupy.set_interface_info('weight', cupy_floats)
dmat_cupy.set_interface_info('label', cupy_floats)
dmat_cupy.set_interface_info('base_margin', cupy_floats)
dmat_cupy.set_interface_info('group', cupy_uints)
# Test setting info with cupy
assert np.array_equal(dmat.get_float_info('weight'), dmat_cupy.get_float_info('weight'))
assert np.array_equal(dmat.get_float_info('label'), dmat_cupy.get_float_info('label'))
assert np.array_equal(dmat.get_float_info('base_margin'),
dmat_cupy.get_float_info('base_margin'))
assert np.array_equal(dmat.get_uint_info('group_ptr'), dmat_cupy.get_uint_info('group_ptr'))