* Rank tests * Remove categorical split specialisation * Extend tests to multiple features, switch to WQSketch * Add tests for SparseCuts * Add external memory quantile tests, fix some existing tests
160 lines
5.8 KiB
C++
160 lines
5.8 KiB
C++
#pragma once
|
|
#include <gtest/gtest.h>
|
|
#include "../../../src/data/simple_dmatrix.h"
|
|
|
|
// Some helper functions used to test both GPU and CPU algorithms
|
|
//
|
|
namespace xgboost {
|
|
namespace common {
|
|
|
|
// Generate columns with different ranges
|
|
inline std::vector<float> GenerateRandom(int num_rows, int num_columns) {
|
|
std::vector<float> x(num_rows*num_columns);
|
|
std::mt19937 rng(0);
|
|
std::uniform_real_distribution<float> dist(0.0, 1.0);
|
|
std::generate(x.begin(), x.end(), [&]() { return dist(rng); });
|
|
for (auto i = 0ull; i < num_columns; i++) {
|
|
for (auto j = 0ull; j < num_rows; j++) {
|
|
x[j * num_columns + i] += i;
|
|
}
|
|
}
|
|
return x;
|
|
}
|
|
|
|
inline std::vector<float> GenerateRandomCategoricalSingleColumn(int n,
|
|
int num_categories) {
|
|
std::vector<float> x(n);
|
|
std::mt19937 rng(0);
|
|
std::uniform_int_distribution<int> dist(0, num_categories - 1);
|
|
std::generate(x.begin(), x.end(), [&]() { return dist(rng); });
|
|
// Make sure each category is present
|
|
for(auto i = 0ull; i < num_categories; i++)
|
|
{
|
|
x[i] = i;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
inline data::SimpleDMatrix GetDMatrixFromData(const std::vector<float>& x, int num_rows, int num_columns) {
|
|
data::DenseAdapter adapter(x.data(), num_rows, num_columns);
|
|
return data::SimpleDMatrix(&adapter, std::numeric_limits<float>::quiet_NaN(),
|
|
1);
|
|
}
|
|
|
|
inline std::shared_ptr<DMatrix> GetExternalMemoryDMatrixFromData(
|
|
const std::vector<float>& x, int num_rows, int num_columns,
|
|
size_t page_size, const dmlc::TemporaryDirectory& tempdir) {
|
|
// Create the svm file in a temp dir
|
|
const std::string tmp_file = tempdir.path + "/temp.libsvm";
|
|
std::ofstream fo(tmp_file.c_str());
|
|
for (auto i = 0ull; i < num_rows; i++) {
|
|
std::stringstream row_data;
|
|
for (auto j = 0ull; j < num_columns; j++) {
|
|
row_data << 1 << " " << j << ":" << std::setprecision(15)
|
|
<< x[i * num_columns + j];
|
|
}
|
|
fo << row_data.str() << "\n";
|
|
}
|
|
fo.close();
|
|
return std::shared_ptr<DMatrix>(DMatrix::Load(
|
|
tmp_file + "#" + tmp_file + ".cache", true, false, "auto", page_size));
|
|
}
|
|
|
|
// Test that elements are approximately equally distributed among bins
|
|
inline void TestBinDistribution(const HistogramCuts& cuts, int column_idx,
|
|
const std::vector<float>& column,
|
|
int num_bins) {
|
|
std::map<int, int> counts;
|
|
for (auto& v : column) {
|
|
counts[cuts.SearchBin(v, column_idx)]++;
|
|
}
|
|
int local_num_bins = cuts.Ptrs()[column_idx + 1] - cuts.Ptrs()[column_idx];
|
|
int expected_num_elements = column.size() / local_num_bins;
|
|
// Allow about 30% deviation. This test is not very strict, it only ensures
|
|
// roughly equal distribution
|
|
int allowable_error = std::max(2, int(expected_num_elements * 0.3));
|
|
|
|
// First and last bin can have smaller
|
|
for (auto& kv : counts) {
|
|
EXPECT_LE(std::abs(counts[kv.first] - expected_num_elements),
|
|
allowable_error );
|
|
}
|
|
}
|
|
|
|
// Test sketch quantiles against the real quantiles
|
|
// Not a very strict test
|
|
inline void TestRank(const std::vector<float>& cuts,
|
|
const std::vector<float>& sorted_x) {
|
|
float eps = 0.05;
|
|
// Ignore the last cut, its special
|
|
size_t j = 0;
|
|
for (auto i = 0; i < cuts.size() - 1; i++) {
|
|
int expected_rank = ((i+1) * sorted_x.size()) / cuts.size();
|
|
while (cuts[i] > sorted_x[j]) {
|
|
j++;
|
|
}
|
|
int actual_rank = j;
|
|
int acceptable_error = std::max(2, int(sorted_x.size() * eps));
|
|
ASSERT_LE(std::abs(expected_rank - actual_rank), acceptable_error);
|
|
}
|
|
}
|
|
|
|
inline void ValidateColumn(const HistogramCuts& cuts, int column_idx,
|
|
const std::vector<float>& column,
|
|
int num_bins) {
|
|
std::vector<float> sorted_column(column);
|
|
std::sort(sorted_column.begin(), sorted_column.end());
|
|
|
|
// Check the endpoints are correct
|
|
EXPECT_LT(cuts.MinValues()[column_idx], sorted_column.front());
|
|
EXPECT_GT(cuts.Values()[cuts.Ptrs()[column_idx]], sorted_column.front());
|
|
EXPECT_GE(cuts.Values()[cuts.Ptrs()[column_idx+1]-1], sorted_column.back());
|
|
|
|
// Check the cuts are sorted
|
|
auto cuts_begin = cuts.Values().begin() + cuts.Ptrs()[column_idx];
|
|
auto cuts_end = cuts.Values().begin() + cuts.Ptrs()[column_idx + 1];
|
|
EXPECT_TRUE(std::is_sorted(cuts_begin, cuts_end));
|
|
|
|
// Check all cut points are unique
|
|
EXPECT_EQ(std::set<float>(cuts_begin, cuts_end).size(),
|
|
cuts_end - cuts_begin);
|
|
|
|
if (sorted_column.size() <= num_bins) {
|
|
// Less unique values than number of bins
|
|
// Each value should get its own bin
|
|
|
|
// First check the inputs are unique
|
|
int num_unique =
|
|
std::set<float>(sorted_column.begin(), sorted_column.end()).size();
|
|
EXPECT_EQ(num_unique, sorted_column.size());
|
|
for (auto i = 0ull; i < sorted_column.size(); i++) {
|
|
ASSERT_EQ(cuts.SearchBin(sorted_column[i], column_idx),
|
|
cuts.Ptrs()[column_idx] + i);
|
|
}
|
|
}
|
|
int num_cuts_column = cuts.Ptrs()[column_idx + 1] - cuts.Ptrs()[column_idx];
|
|
std::vector<float> column_cuts(num_cuts_column);
|
|
std::copy(cuts.Values().begin() + cuts.Ptrs()[column_idx],
|
|
cuts.Values().begin() + cuts.Ptrs()[column_idx + 1],
|
|
column_cuts.begin());
|
|
TestBinDistribution(cuts, column_idx, sorted_column, num_bins);
|
|
TestRank(column_cuts, sorted_column);
|
|
}
|
|
|
|
// x is dense and row major
|
|
inline void ValidateCuts(const HistogramCuts& cuts, std::vector<float>& x,
|
|
int num_rows, int num_columns,
|
|
int num_bins) {
|
|
for (auto i = 0ull; i < num_columns; i++) {
|
|
// Extract the column
|
|
std::vector<float> column(num_rows);
|
|
for (auto j = 0ull; j < num_rows; j++) {
|
|
column[j] = x[j*num_columns + i];
|
|
}
|
|
ValidateColumn(cuts,i, column, num_bins);
|
|
}
|
|
}
|
|
|
|
} // namespace common
|
|
} // namespace xgboost
|