tqchen 8f7e9abf89 Merge commit '4c060df2f17405dc26dc65a77e412d5c2a23525a'
Conflicts:
	subtree/rabit/tracker/rabit_yarn.py
2015-03-09 14:45:23 -07:00

330 lines
14 KiB
C++

/*!
* Copyright (c) 2014 by Contributors
* \file rabit.h
* \brief This file defines rabit's Allreduce/Broadcast interface
* The rabit engine contains the actual implementation
* Code that only uses this header can also be compiled with MPI Allreduce (non fault-tolerant),
*
* rabit.h and serializable.h is all what the user needs to use the rabit interface
* \author Tianqi Chen, Ignacio Cano, Tianyi Zhou
*/
#ifndef RABIT_RABIT_H_
#define RABIT_RABIT_H_
#include <string>
#include <vector>
// optionally support of lambda functions in C++11, if available
#if __cplusplus >= 201103L
#include <functional>
#endif // C++11
// contains definition of ISerializable
#include "./rabit_serializable.h"
// engine definition of rabit, defines internal implementation
// to use rabit interface, there is no need to read engine.h
// rabit.h and serializable.h are enough to use the interface
#include "./rabit/engine.h"
/*! \brief rabit namespace */
namespace rabit {
/*!
* \brief reduction operators namespace
*/
namespace op {
/*!
* \class rabit::op::Max
* \brief maximum reduction operator
*/
struct Max;
/*!
* \class rabit::op::Min
* \brief minimum reduction operator
*/
struct Min;
/*!
* \class rabit::op::Sum
* \brief sum reduction operator
*/
struct Sum;
/*!
* \class rabit::op::BitOR
* \brief bitwise OR reduction operator
*/
struct BitOR;
} // namespace op
/*!
* \brief initializes rabit, call this once at the beginning of your program
* \param argc number of arguments in argv
* \param argv the array of input arguments
*/
inline void Init(int argc, char *argv[]);
/*!
* \brief finalizes the rabit engine, call this function after you finished with all the jobs
*/
inline void Finalize(void);
/*! \brief gets rank of the current process */
inline int GetRank(void);
/*! \brief gets total number of processes */
inline int GetWorldSize(void);
/*! \brief whether rabit env is in distributed mode */
inline bool IsDistributed(void);
/*! \brief gets processor's name */
inline std::string GetProcessorName(void);
/*!
* \brief prints the msg to the tracker,
* this function can be used to communicate progress information to
* the user who monitors the tracker
* \param msg the message to be printed
*/
inline void TrackerPrint(const std::string &msg);
#ifndef RABIT_STRICT_CXX98_
/*!
* \brief prints the msg to the tracker, this function may not be available
* in very strict c++98 compilers, though it usually is.
* this function can be used to communicate progress information to
* the user who monitors the tracker
* \param fmt the format string
*/
inline void TrackerPrintf(const char *fmt, ...);
#endif
/*!
* \brief broadcasts a memory region to every node from the root
*
* Example: int a = 1; Broadcast(&a, sizeof(a), root);
* \param sendrecv_data the pointer to the send/receive buffer,
* \param size the data size
* \param root the process root
*/
inline void Broadcast(void *sendrecv_data, size_t size, int root);
/*!
* \brief broadcasts an std::vector<DType> to every node from root
* \param sendrecv_data the pointer to send/receive vector,
* for the receiver, the vector does not need to be pre-allocated
* \param root the process root
* \tparam DType the data type stored in the vector, has to be a simple data type
* that can be directly transmitted by sending the sizeof(DType)
*/
template<typename DType>
inline void Broadcast(std::vector<DType> *sendrecv_data, int root);
/*!
* \brief broadcasts a std::string to every node from the root
* \param sendrecv_data the pointer to the send/receive buffer,
* for the receiver, the vector does not need to be pre-allocated
* \param root the process root
*/
inline void Broadcast(std::string *sendrecv_data, int root);
/*!
* \brief performs in-place Allreduce on sendrecvbuf
* this function is NOT thread-safe
*
* Example Usage: the following code does an Allreduce and outputs the sum as the result
* vector<int> data(10);
* ...
* Allreduce<op::Sum>(&data[0], data.size());
* ...
* \param sendrecvbuf buffer for both sending and receiving data
* \param count number of elements to be reduced
* \param prepare_fun Lazy preprocessing function, if it is not NULL, prepare_fun(prepare_arg)
* will be called by the function before performing Allreduce in order to initialize the data in sendrecvbuf.
* If the result of Allreduce can be recovered directly, then prepare_func will NOT be called
* \param prepare_arg argument used to pass into the lazy preprocessing function
* \tparam OP see namespace op, reduce operator
* \tparam DType data type
*/
template<typename OP, typename DType>
inline void Allreduce(DType *sendrecvbuf, size_t count,
void (*prepare_fun)(void *arg) = NULL,
void *prepare_arg = NULL);
// C++11 support for lambda prepare function
#if __cplusplus >= 201103L
/*!
* \brief performs in-place Allreduce, on sendrecvbuf
* with a prepare function specified by a lambda function
*
* Example Usage: the following code does an Allreduce and outputs the sum as the result
* vector<int> data(10);
* ...
* Allreduce<op::Sum>(&data[0], data.size(), [&]() {
* for (int i = 0; i < 10; ++i) {
* data[i] = i;
* }
* });
* ...
* \param sendrecvbuf buffer for both sending and receiving data
* \param count number of elements to be reduced
* \param prepare_fun Lazy lambda preprocessing function, prepare_fun() will be invoked
* by the function before performing Allreduce in order to initialize the data in sendrecvbuf.
* If the result of Allreduce can be recovered directly, then prepare_func will NOT be called
* \tparam OP see namespace op, reduce operator
* \tparam DType data type
*/
template<typename OP, typename DType>
inline void Allreduce(DType *sendrecvbuf, size_t count,
std::function<void()> prepare_fun);
#endif // C++11
/*!
* \brief loads the latest check point
* \param global_model pointer to the globally shared model/state
* when calling this function, the caller needs to guarantee that the global_model
* is the same in every node
* \param local_model pointer to the local model that is specific to the current node/rank
* this can be NULL when no local model is needed
*
* \return the version number of the check point loaded
* if returned version == 0, this means no model has been CheckPointed
* the p_model is not touched, users should do the necessary initialization by themselves
*
* Common usage example:
* int iter = rabit::LoadCheckPoint(&model);
* if (iter == 0) model.InitParameters();
* for (i = iter; i < max_iter; ++i) {
* do many things, include allreduce
* rabit::CheckPoint(model);
* }
*
* \sa CheckPoint, VersionNumber
*/
inline int LoadCheckPoint(ISerializable *global_model,
ISerializable *local_model = NULL);
/*!
* \brief checkpoints the model, meaning a stage of execution has finished.
* every time we call check point, a version number will be increased by one
*
* \param global_model pointer to the globally shared model/state
* when calling this function, the caller needs to guarantee that the global_model
* is the same in every node
* \param local_model pointer to the local model that is specific to the current node/rank
* this can be NULL when no local state is needed
* NOTE: local_model requires explicit replication of the model for fault-tolerance, which will
* bring replication cost in the CheckPoint function. global_model does not need explicit replication.
* So, only CheckPoint with the global_model if possible
* \sa LoadCheckPoint, VersionNumber
*/
inline void CheckPoint(const ISerializable *global_model,
const ISerializable *local_model = NULL);
/*!
* \brief This function can be used to replace CheckPoint for global_model only,
* when certain condition is met (see detailed explanation).
*
* This is a "lazy" checkpoint such that only the pointer to the global_model is
* remembered and no memory copy is taken. To use this function, the user MUST ensure that:
* The global_model must remain unchanged until the last call of Allreduce/Broadcast in the current version finishes.
* In other words, the global_model model can be changed only between the last call of
* Allreduce/Broadcast and LazyCheckPoint, both in the same version
*
* For example, suppose the calling sequence is:
* LazyCheckPoint, code1, Allreduce, code2, Broadcast, code3, LazyCheckPoint/(or can be CheckPoint)
*
* Then the user MUST only change the global_model in code3.
*
* The use of LazyCheckPoint instead of CheckPoint will improve the efficiency of the program.
* \param global_model pointer to the globally shared model/state
* when calling this function, the caller needs to guarantee that the global_model
* is the same in every node
* \sa LoadCheckPoint, CheckPoint, VersionNumber
*/
inline void LazyCheckPoint(const ISerializable *global_model);
/*!
* \return version number of the current stored model,
* which means how many calls to CheckPoint we made so far
* \sa LoadCheckPoint, CheckPoint
*/
inline int VersionNumber(void);
// ----- extensions that allow customized reducer ------
// helper class to do customized reduce, user do not need to know the type
namespace engine {
class ReduceHandle;
} // namespace engine
/*!
* \brief template class to make customized reduce and all reduce easy
* Do not use reducer directly in the function you call Finalize,
* because the destructor can execute after Finalize
* \tparam DType data type that to be reduced
* \tparam freduce the customized reduction function
* DType must be a struct, with no pointer
*/
template<typename DType, void (*freduce)(DType &dst, const DType &src)>
class Reducer {
public:
Reducer(void);
/*!
* \brief customized in-place all reduce operation
* \param sendrecvbuf the in place send-recv buffer
* \param count number of elements to be reduced
* \param prepare_fun Lazy preprocessing function, if it is not NULL, prepare_fun(prepare_arg)
* will be called by the function before performing Allreduce, to initialize the data in sendrecvbuf.
* If the result of Allreduce can be recovered directly, then prepare_func will NOT be called
* \param prepare_arg argument used to pass into the lazy preprocessing function
*/
inline void Allreduce(DType *sendrecvbuf, size_t count,
void (*prepare_fun)(void *arg) = NULL,
void *prepare_arg = NULL);
#if __cplusplus >= 201103L
/*!
* \brief customized in-place all reduce operation, with lambda function as preprocessor
* \param sendrecvbuf pointer to the array of objects to be reduced
* \param count number of elements to be reduced
* \param prepare_fun lambda function executed to prepare the data, if necessary
*/
inline void Allreduce(DType *sendrecvbuf, size_t count,
std::function<void()> prepare_fun);
#endif
private:
/*! \brief function handle to do reduce */
engine::ReduceHandle handle_;
};
/*!
* \brief template class to make customized reduce,
* this class defines complex reducer handles all the data structure that can be
* serialized/deserialized into fixed size buffer
* Do not use reducer directly in the function you call Finalize, because the destructor can execute after Finalize
*
* \tparam DType data type that to be reduced, DType must contain the following functions:
* \tparam freduce the customized reduction function
* (1) Save(IStream &fs) (2) Load(IStream &fs) (3) Reduce(const DType &src, size_t max_nbyte)
*/
template<typename DType>
class SerializeReducer {
public:
SerializeReducer(void);
/*!
* \brief customized in-place all reduce operation
* \param sendrecvobj pointer to the array of objects to be reduced
* \param max_nbyte maximum amount of memory needed to serialize each object
* this includes budget limit for intermediate and final result
* \param count number of elements to be reduced
* \param prepare_fun Lazy preprocessing function, if it is not NULL, prepare_fun(prepare_arg)
* will be called by the function before performing Allreduce, to initialize the data in sendrecvbuf.
* If the result of Allreduce can be recovered directly, then the prepare_func will NOT be called
* \param prepare_arg argument used to pass into the lazy preprocessing function
*/
inline void Allreduce(DType *sendrecvobj,
size_t max_nbyte, size_t count,
void (*prepare_fun)(void *arg) = NULL,
void *prepare_arg = NULL);
// C++11 support for lambda prepare function
#if __cplusplus >= 201103L
/*!
* \brief customized in-place all reduce operation, with lambda function as preprocessor
* \param sendrecvobj pointer to the array of objects to be reduced
* \param max_nbyte maximum amount of memory needed to serialize each object
* this includes budget limit for intermediate and final result
* \param count number of elements to be reduced
* \param prepare_fun lambda function executed to prepare the data, if necessary
*/
inline void Allreduce(DType *sendrecvobj,
size_t max_nbyte, size_t count,
std::function<void()> prepare_fun);
#endif
private:
/*! \brief function handle to do reduce */
engine::ReduceHandle handle_;
/*! \brief temporal buffer used to do reduce*/
std::string buffer_;
};
} // namespace rabit
// implementation of template functions
#include "./rabit/rabit-inl.h"
#endif // RABIT_RABIT_H_