778 lines
27 KiB
C++
778 lines
27 KiB
C++
/**
|
|
* Copyright 2016-2023 by XGBoost contributors
|
|
*/
|
|
#include "helpers.h"
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <xgboost/gbm.h>
|
|
#include <xgboost/json.h>
|
|
#include <xgboost/learner.h>
|
|
#include <xgboost/logging.h>
|
|
#include <xgboost/metric.h>
|
|
#include <xgboost/objective.h>
|
|
|
|
#include <algorithm>
|
|
#include <cinttypes>
|
|
#include <random>
|
|
|
|
#include "../../src/data/adapter.h"
|
|
#include "../../src/data/iterative_dmatrix.h"
|
|
#include "../../src/data/simple_dmatrix.h"
|
|
#include "../../src/data/sparse_page_dmatrix.h"
|
|
#include "../../src/gbm/gbtree_model.h"
|
|
#include "filesystem.h" // dmlc::TemporaryDirectory
|
|
#include "xgboost/c_api.h"
|
|
#include "xgboost/predictor.h"
|
|
|
|
#if defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1
|
|
#include <memory>
|
|
#include <numeric>
|
|
#include <vector>
|
|
#include "rmm/mr/device/per_device_resource.hpp"
|
|
#include "rmm/mr/device/cuda_memory_resource.hpp"
|
|
#include "rmm/mr/device/pool_memory_resource.hpp"
|
|
#endif // defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1
|
|
|
|
bool FileExists(const std::string& filename) {
|
|
struct stat st;
|
|
return stat(filename.c_str(), &st) == 0;
|
|
}
|
|
|
|
void CreateSimpleTestData(const std::string& filename) {
|
|
CreateBigTestData(filename, 6);
|
|
}
|
|
|
|
void CreateBigTestData(const std::string& filename, size_t n_entries, bool zero_based) {
|
|
std::ofstream fo(filename.c_str());
|
|
const size_t entries_per_row = 3;
|
|
std::string odd_row;
|
|
if (zero_based) {
|
|
odd_row = " 0:0 3:30 4:40\n";
|
|
} else {
|
|
odd_row = " 1:0 4:30 5:40\n";
|
|
}
|
|
std::string even_row;
|
|
if (zero_based) {
|
|
even_row = " 0:0 1:10 2:20\n";
|
|
} else {
|
|
even_row = " 1:0 2:10 3:20\n";
|
|
}
|
|
|
|
size_t n_rows = (n_entries + entries_per_row - 1) / entries_per_row;
|
|
for (size_t i = 0; i < n_rows; ++i) {
|
|
auto row = i % 2 == 0 ? even_row : odd_row;
|
|
fo << i << row;
|
|
}
|
|
}
|
|
|
|
void CreateTestCSV(std::string const& path, size_t rows, size_t cols) {
|
|
std::vector<float> data(rows * cols);
|
|
|
|
for (size_t i = 0; i < rows * cols; ++i) {
|
|
data[i] = i;
|
|
}
|
|
|
|
std::ofstream fout(path);
|
|
size_t i = 0;
|
|
for (size_t r = 0; r < rows; ++r) {
|
|
for (size_t c = 0; c < cols; ++c) {
|
|
fout << data[i];
|
|
i++;
|
|
if (c != cols - 1) {
|
|
fout << ",";
|
|
}
|
|
}
|
|
fout << "\n";
|
|
}
|
|
fout.flush();
|
|
fout.close();
|
|
}
|
|
|
|
void CheckObjFunctionImpl(std::unique_ptr<xgboost::ObjFunction> const& obj,
|
|
std::vector<xgboost::bst_float> preds,
|
|
std::vector<xgboost::bst_float> labels,
|
|
std::vector<xgboost::bst_float> weights,
|
|
xgboost::MetaInfo const& info,
|
|
std::vector<xgboost::bst_float> out_grad,
|
|
std::vector<xgboost::bst_float> out_hess) {
|
|
xgboost::HostDeviceVector<xgboost::bst_float> in_preds(preds);
|
|
xgboost::HostDeviceVector<xgboost::GradientPair> out_gpair;
|
|
obj->GetGradient(in_preds, info, 1, &out_gpair);
|
|
std::vector<xgboost::GradientPair>& gpair = out_gpair.HostVector();
|
|
|
|
ASSERT_EQ(gpair.size(), in_preds.Size());
|
|
for (int i = 0; i < static_cast<int>(gpair.size()); ++i) {
|
|
EXPECT_NEAR(gpair[i].GetGrad(), out_grad[i], 0.01)
|
|
<< "Unexpected grad for pred=" << preds[i] << " label=" << labels[i]
|
|
<< " weight=" << weights[i];
|
|
EXPECT_NEAR(gpair[i].GetHess(), out_hess[i], 0.01)
|
|
<< "Unexpected hess for pred=" << preds[i] << " label=" << labels[i]
|
|
<< " weight=" << weights[i];
|
|
}
|
|
}
|
|
|
|
void CheckObjFunction(std::unique_ptr<xgboost::ObjFunction> const& obj,
|
|
std::vector<xgboost::bst_float> preds,
|
|
std::vector<xgboost::bst_float> labels,
|
|
std::vector<xgboost::bst_float> weights,
|
|
std::vector<xgboost::bst_float> out_grad,
|
|
std::vector<xgboost::bst_float> out_hess) {
|
|
xgboost::MetaInfo info;
|
|
info.num_row_ = labels.size();
|
|
info.labels =
|
|
xgboost::linalg::Tensor<float, 2>{labels.cbegin(), labels.cend(), {labels.size()}, -1};
|
|
info.weights_.HostVector() = weights;
|
|
|
|
CheckObjFunctionImpl(obj, preds, labels, weights, info, out_grad, out_hess);
|
|
}
|
|
|
|
xgboost::Json CheckConfigReloadImpl(xgboost::Configurable* const configurable,
|
|
std::string name) {
|
|
xgboost::Json config_0 { xgboost::Object() };
|
|
configurable->SaveConfig(&config_0);
|
|
configurable->LoadConfig(config_0);
|
|
|
|
xgboost::Json config_1 { xgboost::Object() };
|
|
configurable->SaveConfig(&config_1);
|
|
|
|
std::string str_0, str_1;
|
|
xgboost::Json::Dump(config_0, &str_0);
|
|
xgboost::Json::Dump(config_1, &str_1);
|
|
EXPECT_EQ(str_0, str_1);
|
|
|
|
if (name != "") {
|
|
EXPECT_EQ(xgboost::get<xgboost::String>(config_1["name"]), name);
|
|
}
|
|
return config_1;
|
|
}
|
|
|
|
void CheckRankingObjFunction(std::unique_ptr<xgboost::ObjFunction> const& obj,
|
|
std::vector<xgboost::bst_float> preds,
|
|
std::vector<xgboost::bst_float> labels,
|
|
std::vector<xgboost::bst_float> weights,
|
|
std::vector<xgboost::bst_uint> groups,
|
|
std::vector<xgboost::bst_float> out_grad,
|
|
std::vector<xgboost::bst_float> out_hess) {
|
|
xgboost::MetaInfo info;
|
|
info.num_row_ = labels.size();
|
|
info.labels = xgboost::linalg::Tensor<float, 2>{
|
|
labels.cbegin(), labels.cend(), {labels.size(), static_cast<size_t>(1)}, -1};
|
|
info.weights_.HostVector() = weights;
|
|
info.group_ptr_ = groups;
|
|
|
|
CheckObjFunctionImpl(obj, preds, labels, weights, info, out_grad, out_hess);
|
|
}
|
|
|
|
xgboost::bst_float GetMetricEval(xgboost::Metric* metric,
|
|
xgboost::HostDeviceVector<xgboost::bst_float> const& preds,
|
|
std::vector<xgboost::bst_float> labels,
|
|
std::vector<xgboost::bst_float> weights,
|
|
std::vector<xgboost::bst_uint> groups,
|
|
xgboost::DataSplitMode data_split_mode) {
|
|
return GetMultiMetricEval(
|
|
metric, preds,
|
|
xgboost::linalg::Tensor<float, 2>{labels.begin(), labels.end(), {labels.size()}, -1}, weights,
|
|
groups, data_split_mode);
|
|
}
|
|
|
|
double GetMultiMetricEval(xgboost::Metric* metric,
|
|
xgboost::HostDeviceVector<xgboost::bst_float> const& preds,
|
|
xgboost::linalg::Tensor<float, 2> const& labels,
|
|
std::vector<xgboost::bst_float> weights,
|
|
std::vector<xgboost::bst_uint> groups,
|
|
xgboost::DataSplitMode data_split_mode) {
|
|
std::shared_ptr<xgboost::DMatrix> p_fmat{xgboost::RandomDataGenerator{0, 0, 0}.GenerateDMatrix()};
|
|
auto& info = p_fmat->Info();
|
|
info.num_row_ = labels.Shape(0);
|
|
info.labels.Reshape(labels.Shape()[0], labels.Shape()[1]);
|
|
info.labels.Data()->Copy(*labels.Data());
|
|
info.weights_.HostVector() = weights;
|
|
info.group_ptr_ = groups;
|
|
info.data_split_mode = data_split_mode;
|
|
if (info.IsVerticalFederated() && xgboost::collective::GetRank() != 0) {
|
|
info.labels.Reshape(0);
|
|
}
|
|
return metric->Evaluate(preds, p_fmat);
|
|
}
|
|
|
|
namespace xgboost {
|
|
|
|
float GetBaseScore(Json const &config) {
|
|
return std::stof(get<String const>(config["learner"]["learner_model_param"]["base_score"]));
|
|
}
|
|
|
|
SimpleLCG::StateType SimpleLCG::operator()() {
|
|
state_ = (alpha_ * state_ + (state_ == 0 ? kDefaultInit : 0)) % mod_;
|
|
return state_;
|
|
}
|
|
SimpleLCG::StateType SimpleLCG::Min() const { return min(); }
|
|
SimpleLCG::StateType SimpleLCG::Max() const { return max(); }
|
|
// Make sure it's compile time constant.
|
|
static_assert(SimpleLCG::max() - SimpleLCG::min());
|
|
|
|
void RandomDataGenerator::GenerateLabels(std::shared_ptr<DMatrix> p_fmat) const {
|
|
RandomDataGenerator{p_fmat->Info().num_row_, this->n_targets_, 0.0f}.GenerateDense(
|
|
p_fmat->Info().labels.Data());
|
|
CHECK_EQ(p_fmat->Info().labels.Size(), this->rows_ * this->n_targets_);
|
|
p_fmat->Info().labels.Reshape(this->rows_, this->n_targets_);
|
|
if (device_ != Context::kCpuId) {
|
|
p_fmat->Info().labels.SetDevice(device_);
|
|
}
|
|
}
|
|
|
|
void RandomDataGenerator::GenerateDense(HostDeviceVector<float> *out) const {
|
|
xgboost::SimpleRealUniformDistribution<bst_float> dist(lower_, upper_);
|
|
CHECK(out);
|
|
|
|
SimpleLCG lcg{lcg_};
|
|
out->Resize(rows_ * cols_, 0);
|
|
auto &h_data = out->HostVector();
|
|
float sparsity = sparsity_ * (upper_ - lower_) + lower_;
|
|
for (auto &v : h_data) {
|
|
auto g = dist(&lcg);
|
|
if (g < sparsity) {
|
|
v = std::numeric_limits<float>::quiet_NaN();
|
|
} else {
|
|
v = dist(&lcg);
|
|
}
|
|
}
|
|
if (device_ >= 0) {
|
|
out->SetDevice(device_);
|
|
out->DeviceSpan();
|
|
}
|
|
}
|
|
|
|
Json RandomDataGenerator::ArrayInterfaceImpl(HostDeviceVector<float> *storage,
|
|
size_t rows, size_t cols) const {
|
|
this->GenerateDense(storage);
|
|
return GetArrayInterface(storage, rows, cols);
|
|
}
|
|
|
|
std::string RandomDataGenerator::GenerateArrayInterface(
|
|
HostDeviceVector<float> *storage) const {
|
|
auto array_interface = this->ArrayInterfaceImpl(storage, rows_, cols_);
|
|
std::string out;
|
|
Json::Dump(array_interface, &out);
|
|
return out;
|
|
}
|
|
|
|
std::pair<std::vector<std::string>, std::string> MakeArrayInterfaceBatch(
|
|
HostDeviceVector<float> const* storage, std::size_t n_samples, bst_feature_t n_features,
|
|
std::size_t batches, std::int32_t device) {
|
|
std::vector<std::string> result(batches);
|
|
std::vector<Json> objects;
|
|
|
|
size_t const rows_per_batch = n_samples / batches;
|
|
|
|
auto make_interface = [storage, device, n_features](std::size_t offset, std::size_t rows) {
|
|
Json array_interface{Object()};
|
|
array_interface["data"] = std::vector<Json>(2);
|
|
if (device >= 0) {
|
|
array_interface["data"][0] =
|
|
Integer(reinterpret_cast<int64_t>(storage->DevicePointer() + offset));
|
|
array_interface["stream"] = Null{};
|
|
} else {
|
|
array_interface["data"][0] =
|
|
Integer(reinterpret_cast<int64_t>(storage->HostPointer() + offset));
|
|
}
|
|
|
|
array_interface["data"][1] = Boolean(false);
|
|
|
|
array_interface["shape"] = std::vector<Json>(2);
|
|
array_interface["shape"][0] = rows;
|
|
array_interface["shape"][1] = n_features;
|
|
|
|
array_interface["typestr"] = String("<f4");
|
|
array_interface["version"] = 3;
|
|
return array_interface;
|
|
};
|
|
|
|
auto j_interface = make_interface(0, n_samples);
|
|
size_t offset = 0;
|
|
for (size_t i = 0; i < batches - 1; ++i) {
|
|
objects.emplace_back(make_interface(offset, rows_per_batch));
|
|
offset += rows_per_batch * n_features;
|
|
}
|
|
|
|
size_t const remaining = n_samples - offset / n_features;
|
|
CHECK_LE(offset, n_samples * n_features);
|
|
objects.emplace_back(make_interface(offset, remaining));
|
|
|
|
for (size_t i = 0; i < batches; ++i) {
|
|
Json::Dump(objects[i], &result[i]);
|
|
}
|
|
|
|
std::string interface_str;
|
|
Json::Dump(j_interface, &interface_str);
|
|
return {result, interface_str};
|
|
}
|
|
|
|
std::pair<std::vector<std::string>, std::string> RandomDataGenerator::GenerateArrayInterfaceBatch(
|
|
HostDeviceVector<float>* storage, size_t batches) const {
|
|
this->GenerateDense(storage);
|
|
return MakeArrayInterfaceBatch(storage, rows_, cols_, batches, device_);
|
|
}
|
|
|
|
std::string RandomDataGenerator::GenerateColumnarArrayInterface(
|
|
std::vector<HostDeviceVector<float>> *data) const {
|
|
CHECK(data);
|
|
CHECK_EQ(data->size(), cols_);
|
|
auto& storage = *data;
|
|
Json arr { Array() };
|
|
for (size_t i = 0; i < cols_; ++i) {
|
|
auto column = this->ArrayInterfaceImpl(&storage[i], rows_, 1);
|
|
get<Array>(arr).emplace_back(column);
|
|
}
|
|
std::string out;
|
|
Json::Dump(arr, &out);
|
|
return out;
|
|
}
|
|
|
|
void RandomDataGenerator::GenerateCSR(
|
|
HostDeviceVector<float>* value, HostDeviceVector<bst_row_t>* row_ptr,
|
|
HostDeviceVector<bst_feature_t>* columns) const {
|
|
auto& h_value = value->HostVector();
|
|
auto& h_rptr = row_ptr->HostVector();
|
|
auto& h_cols = columns->HostVector();
|
|
SimpleLCG lcg{lcg_};
|
|
|
|
xgboost::SimpleRealUniformDistribution<bst_float> dist(lower_, upper_);
|
|
float sparsity = sparsity_ * (upper_ - lower_) + lower_;
|
|
SimpleRealUniformDistribution<bst_float> cat(0.0, max_cat_);
|
|
|
|
h_rptr.emplace_back(0);
|
|
for (size_t i = 0; i < rows_; ++i) {
|
|
size_t rptr = h_rptr.back();
|
|
for (size_t j = 0; j < cols_; ++j) {
|
|
auto g = dist(&lcg);
|
|
if (g >= sparsity) {
|
|
if (common::IsCat(ft_, j)) {
|
|
g = common::AsCat(cat(&lcg));
|
|
} else {
|
|
g = dist(&lcg);
|
|
}
|
|
h_value.emplace_back(g);
|
|
rptr++;
|
|
h_cols.emplace_back(j);
|
|
}
|
|
}
|
|
h_rptr.emplace_back(rptr);
|
|
}
|
|
|
|
if (device_ >= 0) {
|
|
value->SetDevice(device_);
|
|
value->DeviceSpan();
|
|
row_ptr->SetDevice(device_);
|
|
row_ptr->DeviceSpan();
|
|
columns->SetDevice(device_);
|
|
columns->DeviceSpan();
|
|
}
|
|
|
|
CHECK_LE(h_value.size(), rows_ * cols_);
|
|
CHECK_EQ(value->Size(), h_rptr.back());
|
|
CHECK_EQ(columns->Size(), value->Size());
|
|
}
|
|
|
|
[[nodiscard]] std::shared_ptr<DMatrix> RandomDataGenerator::GenerateDMatrix(bool with_label,
|
|
bool float_label,
|
|
size_t classes) const {
|
|
HostDeviceVector<float> data;
|
|
HostDeviceVector<bst_row_t> rptrs;
|
|
HostDeviceVector<bst_feature_t> columns;
|
|
this->GenerateCSR(&data, &rptrs, &columns);
|
|
data::CSRAdapter adapter(rptrs.HostPointer(), columns.HostPointer(), data.HostPointer(), rows_,
|
|
data.Size(), cols_);
|
|
std::shared_ptr<DMatrix> out{
|
|
DMatrix::Create(&adapter, std::numeric_limits<float>::quiet_NaN(), 1)};
|
|
|
|
if (with_label) {
|
|
RandomDataGenerator gen{rows_, n_targets_, 0.0f};
|
|
if (!float_label) {
|
|
gen.Lower(0).Upper(classes).GenerateDense(out->Info().labels.Data());
|
|
out->Info().labels.Reshape(this->rows_, this->n_targets_);
|
|
auto& h_labels = out->Info().labels.Data()->HostVector();
|
|
for (auto& v : h_labels) {
|
|
v = static_cast<float>(static_cast<uint32_t>(v));
|
|
}
|
|
} else {
|
|
gen.GenerateDense(out->Info().labels.Data());
|
|
CHECK_EQ(out->Info().labels.Size(), this->rows_ * this->n_targets_);
|
|
out->Info().labels.Reshape(this->rows_, this->n_targets_);
|
|
}
|
|
}
|
|
if (device_ >= 0) {
|
|
out->Info().labels.SetDevice(device_);
|
|
out->Info().feature_types.SetDevice(device_);
|
|
for (auto const& page : out->GetBatches<SparsePage>()) {
|
|
page.data.SetDevice(device_);
|
|
page.offset.SetDevice(device_);
|
|
// pull to device
|
|
page.data.ConstDeviceSpan();
|
|
page.offset.ConstDeviceSpan();
|
|
}
|
|
}
|
|
if (!ft_.empty()) {
|
|
out->Info().feature_types.HostVector() = ft_;
|
|
}
|
|
return out;
|
|
}
|
|
|
|
[[nodiscard]] std::shared_ptr<DMatrix> RandomDataGenerator::GenerateSparsePageDMatrix(
|
|
std::string prefix, bool with_label) const {
|
|
CHECK_GE(this->rows_, this->n_batches_);
|
|
CHECK_GE(this->n_batches_, 1)
|
|
<< "Must set the n_batches before generating an external memory DMatrix.";
|
|
std::unique_ptr<ArrayIterForTest> iter;
|
|
if (device_ == Context::kCpuId) {
|
|
iter = std::make_unique<NumpyArrayIterForTest>(this->sparsity_, rows_, cols_, n_batches_);
|
|
} else {
|
|
#if defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
|
|
iter = std::make_unique<CudaArrayIterForTest>(this->sparsity_, rows_, cols_, n_batches_);
|
|
#else
|
|
CHECK(iter);
|
|
#endif // defined(XGBOOST_USE_CUDA)
|
|
}
|
|
|
|
std::unique_ptr<DMatrix> dmat{
|
|
DMatrix::Create(static_cast<DataIterHandle>(iter.get()), iter->Proxy(), Reset, Next,
|
|
std::numeric_limits<float>::quiet_NaN(), Context{}.Threads(), prefix)};
|
|
|
|
auto row_page_path =
|
|
data::MakeId(prefix, dynamic_cast<data::SparsePageDMatrix*>(dmat.get())) + ".row.page";
|
|
EXPECT_TRUE(FileExists(row_page_path)) << row_page_path;
|
|
|
|
// Loop over the batches and count the number of pages
|
|
std::size_t batch_count = 0;
|
|
bst_row_t row_count = 0;
|
|
for (const auto& batch : dmat->GetBatches<xgboost::SparsePage>()) {
|
|
batch_count++;
|
|
row_count += batch.Size();
|
|
CHECK_NE(batch.data.Size(), 0);
|
|
}
|
|
|
|
EXPECT_EQ(batch_count, n_batches_);
|
|
EXPECT_EQ(row_count, dmat->Info().num_row_);
|
|
|
|
if (with_label) {
|
|
RandomDataGenerator{dmat->Info().num_row_, this->n_targets_, 0.0f}.GenerateDense(
|
|
dmat->Info().labels.Data());
|
|
CHECK_EQ(dmat->Info().labels.Size(), this->rows_ * this->n_targets_);
|
|
dmat->Info().labels.Reshape(this->rows_, this->n_targets_);
|
|
}
|
|
return dmat;
|
|
}
|
|
|
|
std::shared_ptr<DMatrix> RandomDataGenerator::GenerateQuantileDMatrix(bool with_label) {
|
|
NumpyArrayIterForTest iter{this->sparsity_, this->rows_, this->cols_, 1};
|
|
auto m = std::make_shared<data::IterativeDMatrix>(
|
|
&iter, iter.Proxy(), nullptr, Reset, Next, std::numeric_limits<float>::quiet_NaN(), 0, bins_);
|
|
if (with_label) {
|
|
this->GenerateLabels(m);
|
|
}
|
|
return m;
|
|
}
|
|
|
|
#if !defined(XGBOOST_USE_CUDA) && !defined(XGBOOST_USE_HIP)
|
|
CudaArrayIterForTest::CudaArrayIterForTest(float sparsity, size_t rows, size_t cols, size_t batches)
|
|
: ArrayIterForTest{sparsity, rows, cols, batches} {
|
|
common::AssertGPUSupport();
|
|
}
|
|
|
|
int CudaArrayIterForTest::Next() {
|
|
common::AssertGPUSupport();
|
|
return 0;
|
|
}
|
|
#endif // !defined(XGBOOST_USE_CUDA)
|
|
|
|
NumpyArrayIterForTest::NumpyArrayIterForTest(float sparsity, size_t rows, size_t cols,
|
|
size_t batches)
|
|
: ArrayIterForTest{sparsity, rows, cols, batches} {
|
|
rng_->Device(Context::kCpuId);
|
|
std::tie(batches_, interface_) = rng_->GenerateArrayInterfaceBatch(&data_, n_batches_);
|
|
this->Reset();
|
|
}
|
|
|
|
int NumpyArrayIterForTest::Next() {
|
|
if (iter_ == n_batches_) {
|
|
return 0;
|
|
}
|
|
XGProxyDMatrixSetDataDense(proxy_, batches_[iter_].c_str());
|
|
iter_++;
|
|
return 1;
|
|
}
|
|
|
|
std::shared_ptr<DMatrix> GetDMatrixFromData(const std::vector<float>& x, std::size_t num_rows,
|
|
bst_feature_t num_columns) {
|
|
data::DenseAdapter adapter(x.data(), num_rows, num_columns);
|
|
auto p_fmat = std::shared_ptr<DMatrix>(
|
|
new data::SimpleDMatrix(&adapter, std::numeric_limits<float>::quiet_NaN(), 1));
|
|
CHECK_EQ(p_fmat->Info().num_row_, num_rows);
|
|
CHECK_EQ(p_fmat->Info().num_col_, num_columns);
|
|
return p_fmat;
|
|
}
|
|
|
|
std::unique_ptr<DMatrix> CreateSparsePageDMatrix(bst_row_t n_samples, bst_feature_t n_features,
|
|
size_t n_batches, std::string prefix) {
|
|
CHECK_GE(n_samples, n_batches);
|
|
NumpyArrayIterForTest iter(0, n_samples, n_features, n_batches);
|
|
|
|
std::unique_ptr<DMatrix> dmat{
|
|
DMatrix::Create(static_cast<DataIterHandle>(&iter), iter.Proxy(), Reset, Next,
|
|
std::numeric_limits<float>::quiet_NaN(), omp_get_max_threads(), prefix)};
|
|
|
|
auto row_page_path =
|
|
data::MakeId(prefix, dynamic_cast<data::SparsePageDMatrix*>(dmat.get())) + ".row.page";
|
|
EXPECT_TRUE(FileExists(row_page_path)) << row_page_path;
|
|
|
|
// Loop over the batches and count the number of pages
|
|
int64_t batch_count = 0;
|
|
int64_t row_count = 0;
|
|
for (const auto& batch : dmat->GetBatches<xgboost::SparsePage>()) {
|
|
batch_count++;
|
|
row_count += batch.Size();
|
|
}
|
|
|
|
EXPECT_GE(batch_count, n_batches);
|
|
EXPECT_EQ(row_count, dmat->Info().num_row_);
|
|
return dmat;
|
|
}
|
|
|
|
std::unique_ptr<DMatrix> CreateSparsePageDMatrix(size_t n_entries,
|
|
std::string prefix) {
|
|
size_t n_columns = 3;
|
|
size_t n_rows = n_entries / n_columns;
|
|
NumpyArrayIterForTest iter(0, n_rows, n_columns, 2);
|
|
|
|
std::unique_ptr<DMatrix> dmat{
|
|
DMatrix::Create(static_cast<DataIterHandle>(&iter), iter.Proxy(), Reset, Next,
|
|
std::numeric_limits<float>::quiet_NaN(), 0, prefix)};
|
|
auto row_page_path =
|
|
data::MakeId(prefix,
|
|
dynamic_cast<data::SparsePageDMatrix *>(dmat.get())) +
|
|
".row.page";
|
|
EXPECT_TRUE(FileExists(row_page_path)) << row_page_path;
|
|
|
|
// Loop over the batches and count the records
|
|
int64_t batch_count = 0;
|
|
int64_t row_count = 0;
|
|
for (const auto &batch : dmat->GetBatches<xgboost::SparsePage>()) {
|
|
batch_count++;
|
|
row_count += batch.Size();
|
|
}
|
|
EXPECT_GE(batch_count, 2);
|
|
EXPECT_EQ(row_count, dmat->Info().num_row_);
|
|
return dmat;
|
|
}
|
|
|
|
std::unique_ptr<DMatrix> CreateSparsePageDMatrixWithRC(
|
|
size_t n_rows, size_t n_cols, size_t page_size, bool deterministic,
|
|
const dmlc::TemporaryDirectory& tempdir) {
|
|
if (!n_rows || !n_cols) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Create the svm file in a temp dir
|
|
const std::string tmp_file = tempdir.path + "/big.libsvm";
|
|
|
|
std::ofstream fo(tmp_file.c_str());
|
|
size_t cols_per_row = ((std::max(n_rows, n_cols) - 1) / std::min(n_rows, n_cols)) + 1;
|
|
int64_t rem_cols = n_cols;
|
|
size_t col_idx = 0;
|
|
|
|
// Random feature id generator
|
|
std::random_device rdev;
|
|
std::unique_ptr<std::mt19937> gen;
|
|
if (deterministic) {
|
|
// Seed it with a constant value for this configuration - without getting too fancy
|
|
// like ordered pairing functions and its likes to make it truely unique
|
|
gen.reset(new std::mt19937(n_rows * n_cols));
|
|
} else {
|
|
gen.reset(new std::mt19937(rdev()));
|
|
}
|
|
std::uniform_int_distribution<size_t> label(0, 1);
|
|
std::uniform_int_distribution<size_t> dis(1, n_cols);
|
|
|
|
for (size_t i = 0; i < n_rows; ++i) {
|
|
// Make sure that all cols are slotted in the first few rows; randomly distribute the
|
|
// rest
|
|
std::stringstream row_data;
|
|
size_t j = 0;
|
|
if (rem_cols > 0) {
|
|
for (; j < std::min(static_cast<size_t>(rem_cols), cols_per_row); ++j) {
|
|
row_data << label(*gen) << " " << (col_idx + j) << ":"
|
|
<< (col_idx + j + 1) * 10 * i;
|
|
}
|
|
rem_cols -= cols_per_row;
|
|
} else {
|
|
// Take some random number of colums in [1, n_cols] and slot them here
|
|
std::vector<size_t> random_columns;
|
|
size_t ncols = dis(*gen);
|
|
for (; j < ncols; ++j) {
|
|
size_t fid = (col_idx + j) % n_cols;
|
|
random_columns.push_back(fid);
|
|
}
|
|
std::sort(random_columns.begin(), random_columns.end());
|
|
for (auto fid : random_columns) {
|
|
row_data << label(*gen) << " " << fid << ":" << (fid + 1) * 10 * i;
|
|
}
|
|
}
|
|
col_idx += j;
|
|
|
|
fo << row_data.str() << "\n";
|
|
}
|
|
fo.close();
|
|
|
|
std::string uri = tmp_file + "?format=libsvm";
|
|
if (page_size > 0) {
|
|
uri += "#" + tmp_file + ".cache";
|
|
}
|
|
std::unique_ptr<DMatrix> dmat(DMatrix::Load(uri));
|
|
return dmat;
|
|
}
|
|
|
|
std::unique_ptr<GradientBooster> CreateTrainedGBM(std::string name, Args kwargs, size_t kRows,
|
|
size_t kCols,
|
|
LearnerModelParam const* learner_model_param,
|
|
Context const* ctx) {
|
|
auto caches = std::make_shared<PredictionContainer>();
|
|
std::unique_ptr<GradientBooster> gbm{GradientBooster::Create(name, ctx, learner_model_param)};
|
|
gbm->Configure(kwargs);
|
|
auto p_dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
|
|
|
|
std::vector<float> labels(kRows);
|
|
for (size_t i = 0; i < kRows; ++i) {
|
|
labels[i] = i;
|
|
}
|
|
p_dmat->Info().labels =
|
|
linalg::Tensor<float, 2>{labels.cbegin(), labels.cend(), {labels.size()}, -1};
|
|
HostDeviceVector<GradientPair> gpair;
|
|
auto& h_gpair = gpair.HostVector();
|
|
h_gpair.resize(kRows);
|
|
for (size_t i = 0; i < kRows; ++i) {
|
|
h_gpair[i] = GradientPair{static_cast<float>(i), 1};
|
|
}
|
|
|
|
PredictionCacheEntry predts;
|
|
|
|
gbm->DoBoost(p_dmat.get(), &gpair, &predts, nullptr);
|
|
|
|
return gbm;
|
|
}
|
|
|
|
ArrayIterForTest::ArrayIterForTest(float sparsity, size_t rows, size_t cols, size_t batches)
|
|
: rows_{rows}, cols_{cols}, n_batches_{batches} {
|
|
XGProxyDMatrixCreate(&proxy_);
|
|
rng_ = std::make_unique<RandomDataGenerator>(rows_, cols_, sparsity);
|
|
std::tie(batches_, interface_) = rng_->GenerateArrayInterfaceBatch(&data_, n_batches_);
|
|
}
|
|
|
|
ArrayIterForTest::ArrayIterForTest(Context const* ctx, HostDeviceVector<float> const& data,
|
|
std::size_t n_samples, bst_feature_t n_features,
|
|
std::size_t n_batches)
|
|
: rows_{n_samples}, cols_{n_features}, n_batches_{n_batches} {
|
|
XGProxyDMatrixCreate(&proxy_);
|
|
this->data_.Resize(data.Size());
|
|
CHECK_EQ(this->data_.Size(), rows_ * cols_ * n_batches);
|
|
this->data_.Copy(data);
|
|
std::tie(batches_, interface_) =
|
|
MakeArrayInterfaceBatch(&data_, rows_, cols_, n_batches_, ctx->gpu_id);
|
|
}
|
|
|
|
ArrayIterForTest::~ArrayIterForTest() { XGDMatrixFree(proxy_); }
|
|
|
|
void DMatrixToCSR(DMatrix *dmat, std::vector<float> *p_data,
|
|
std::vector<size_t> *p_row_ptr,
|
|
std::vector<bst_feature_t> *p_cids) {
|
|
auto &data = *p_data;
|
|
auto &row_ptr = *p_row_ptr;
|
|
auto &cids = *p_cids;
|
|
|
|
data.resize(dmat->Info().num_nonzero_);
|
|
cids.resize(data.size());
|
|
row_ptr.resize(dmat->Info().num_row_ + 1);
|
|
SparsePage page;
|
|
for (const auto &batch : dmat->GetBatches<SparsePage>()) {
|
|
page.Push(batch);
|
|
}
|
|
|
|
auto const& in_offset = page.offset.HostVector();
|
|
auto const& in_data = page.data.HostVector();
|
|
|
|
CHECK_EQ(in_offset.size(), row_ptr.size());
|
|
std::copy(in_offset.cbegin(), in_offset.cend(), row_ptr.begin());
|
|
ASSERT_EQ(in_data.size(), data.size());
|
|
std::transform(in_data.cbegin(), in_data.cend(), data.begin(), [](Entry const& e) {
|
|
return e.fvalue;
|
|
});
|
|
ASSERT_EQ(in_data.size(), cids.size());
|
|
std::transform(in_data.cbegin(), in_data.cend(), cids.begin(), [](Entry const& e) {
|
|
return e.index;
|
|
});
|
|
}
|
|
|
|
#if defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1
|
|
|
|
using CUDAMemoryResource = rmm::mr::cuda_memory_resource;
|
|
using PoolMemoryResource = rmm::mr::pool_memory_resource<CUDAMemoryResource>;
|
|
class RMMAllocator {
|
|
public:
|
|
std::vector<std::unique_ptr<CUDAMemoryResource>> cuda_mr;
|
|
std::vector<std::unique_ptr<PoolMemoryResource>> pool_mr;
|
|
int n_gpu;
|
|
RMMAllocator() : n_gpu(common::AllVisibleGPUs()) {
|
|
int current_device;
|
|
#if defined(XGBOOST_USE_CUDA)
|
|
CHECK_EQ(cudaGetDevice(¤t_device), cudaSuccess);
|
|
#elif defined(XGBOOST_USE_HIP)
|
|
CHECK_EQ(hipGetDevice(¤t_device), hipSuccess);
|
|
#endif
|
|
for (int i = 0; i < n_gpu; ++i) {
|
|
#if defined(XGBOOST_USE_CUDA)
|
|
CHECK_EQ(cudaSetDevice(i), cudaSuccess);
|
|
#elif defined(XGBOOST_USE_HIP)
|
|
CHECK_EQ(hipSetDevice(i), hipSuccess);
|
|
#endif
|
|
|
|
cuda_mr.push_back(std::make_unique<CUDAMemoryResource>());
|
|
pool_mr.push_back(std::make_unique<PoolMemoryResource>(cuda_mr[i].get()));
|
|
}
|
|
|
|
#if defined(XGBOOST_USE_CUDA)
|
|
CHECK_EQ(cudaSetDevice(current_device), cudaSuccess);
|
|
#elif defined(XGBOOST_USE_HIP)
|
|
CHECK_EQ(hipSetDevice(current_device), hipSuccess);
|
|
#endif
|
|
}
|
|
~RMMAllocator() = default;
|
|
};
|
|
|
|
void DeleteRMMResource(RMMAllocator* r) {
|
|
delete r;
|
|
}
|
|
|
|
RMMAllocatorPtr SetUpRMMResourceForCppTests(int argc, char** argv) {
|
|
bool use_rmm_pool = false;
|
|
for (int i = 1; i < argc; ++i) {
|
|
if (argv[i] == std::string("--use-rmm-pool")) {
|
|
use_rmm_pool = true;
|
|
}
|
|
}
|
|
if (!use_rmm_pool) {
|
|
return RMMAllocatorPtr(nullptr, DeleteRMMResource);
|
|
}
|
|
LOG(INFO) << "Using RMM memory pool";
|
|
auto ptr = RMMAllocatorPtr(new RMMAllocator(), DeleteRMMResource);
|
|
for (int i = 0; i < ptr->n_gpu; ++i) {
|
|
rmm::mr::set_per_device_resource(rmm::cuda_device_id(i), ptr->pool_mr[i].get());
|
|
}
|
|
return ptr;
|
|
}
|
|
#else // defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1
|
|
class RMMAllocator {};
|
|
|
|
void DeleteRMMResource(RMMAllocator*) {}
|
|
|
|
RMMAllocatorPtr SetUpRMMResourceForCppTests(int, char**) { return {nullptr, DeleteRMMResource}; }
|
|
#endif // !defined(XGBOOST_USE_RMM) || XGBOOST_USE_RMM != 1
|
|
} // namespace xgboost
|