xgboost/tests/ci_build/Dockerfile.rmm
Jiaming Yuan ba50e6eb62
[backport] [CI] Require C++17 + CMake 3.18; Use CUDA 11.8 in CI (#8853) (#8971)
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2023-03-26 00:10:03 +08:00

50 lines
1.8 KiB
Docker

ARG CUDA_VERSION_ARG
FROM nvidia/cuda:$CUDA_VERSION_ARG-devel-ubuntu20.04
ARG CUDA_VERSION_ARG
ARG RAPIDS_VERSION_ARG
ARG NCCL_VERSION_ARG
# Environment
ENV DEBIAN_FRONTEND noninteractive
SHELL ["/bin/bash", "-c"] # Use Bash as shell
# Install all basic requirements
RUN \
apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub && \
apt-get update && \
apt-get install -y wget unzip bzip2 libgomp1 build-essential ninja-build git && \
# Python
wget -nv -O Miniconda3.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && \
bash Miniconda3.sh -b -p /opt/python
# NCCL2 (License: https://docs.nvidia.com/deeplearning/sdk/nccl-sla/index.html)
RUN \
export CUDA_SHORT=`echo $CUDA_VERSION_ARG | grep -o -E '[0-9]+\.[0-9]'` && \
export NCCL_VERSION=$NCCL_VERSION_ARG && \
apt-get update && \
apt-get install -y --allow-downgrades --allow-change-held-packages libnccl2=${NCCL_VERSION}+cuda${CUDA_SHORT} libnccl-dev=${NCCL_VERSION}+cuda${CUDA_SHORT}
ENV PATH=/opt/python/bin:$PATH
# Create new Conda environment with RMM
RUN \
conda install -c conda-forge mamba && \
mamba create -n gpu_test -c rapidsai-nightly -c rapidsai -c nvidia -c conda-forge -c defaults \
python=3.10 rmm=$RAPIDS_VERSION_ARG* cudatoolkit=$CUDA_VERSION_ARG cmake && \
mamba clean --all
ENV GOSU_VERSION 1.10
# Install lightweight sudo (not bound to TTY)
RUN set -ex; \
wget -nv -O /usr/local/bin/gosu "https://github.com/tianon/gosu/releases/download/$GOSU_VERSION/gosu-amd64" && \
chmod +x /usr/local/bin/gosu && \
gosu nobody true
# Default entry-point to use if running locally
# It will preserve attributes of created files
COPY entrypoint.sh /scripts/
WORKDIR /workspace
ENTRYPOINT ["/scripts/entrypoint.sh"]