* Implement multi-target for hist. - Add new hist tree builder. - Move data fetchers for tests. - Dispatch function calls in gbm base on the tree type.
515 lines
18 KiB
C++
515 lines
18 KiB
C++
/*!
|
|
* Copyright 2019-2022 XGBoost contributors
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
#include <xgboost/context.h>
|
|
|
|
#include "../../../src/data/adapter.h"
|
|
#include "../../../src/data/proxy_dmatrix.h"
|
|
#include "../../../src/gbm/gbtree.h"
|
|
#include "../filesystem.h" // dmlc::TemporaryDirectory
|
|
#include "../helpers.h"
|
|
#include "xgboost/base.h"
|
|
#include "xgboost/host_device_vector.h"
|
|
#include "xgboost/learner.h"
|
|
#include "xgboost/predictor.h"
|
|
|
|
namespace xgboost {
|
|
TEST(GBTree, SelectTreeMethod) {
|
|
size_t constexpr kCols = 10;
|
|
|
|
Context ctx;
|
|
LearnerModelParam mparam{MakeMP(kCols, .5, 1)};
|
|
|
|
std::unique_ptr<GradientBooster> p_gbm {
|
|
GradientBooster::Create("gbtree", &ctx, &mparam)};
|
|
auto& gbtree = dynamic_cast<gbm::GBTree&> (*p_gbm);
|
|
|
|
// Test if `tree_method` can be set
|
|
Args args {{"tree_method", "approx"}};
|
|
gbtree.Configure({args.cbegin(), args.cend()});
|
|
|
|
gbtree.Configure(args);
|
|
auto const& tparam = gbtree.GetTrainParam();
|
|
gbtree.Configure({{"tree_method", "approx"}});
|
|
ASSERT_EQ(tparam.updater_seq, "grow_histmaker");
|
|
gbtree.Configure({{"tree_method", "exact"}});
|
|
ASSERT_EQ(tparam.updater_seq, "grow_colmaker,prune");
|
|
gbtree.Configure({{"tree_method", "hist"}});
|
|
ASSERT_EQ(tparam.updater_seq, "grow_quantile_histmaker");
|
|
gbtree.Configure({{"booster", "dart"}, {"tree_method", "hist"}});
|
|
ASSERT_EQ(tparam.updater_seq, "grow_quantile_histmaker");
|
|
|
|
#ifdef XGBOOST_USE_CUDA
|
|
ctx.UpdateAllowUnknown(Args{{"gpu_id", "0"}});
|
|
gbtree.Configure({{"tree_method", "gpu_hist"}});
|
|
ASSERT_EQ(tparam.updater_seq, "grow_gpu_hist");
|
|
gbtree.Configure({{"booster", "dart"}, {"tree_method", "gpu_hist"}});
|
|
ASSERT_EQ(tparam.updater_seq, "grow_gpu_hist");
|
|
#endif // XGBOOST_USE_CUDA
|
|
}
|
|
|
|
TEST(GBTree, PredictionCache) {
|
|
size_t constexpr kRows = 100, kCols = 10;
|
|
Context ctx;
|
|
LearnerModelParam mparam{MakeMP(kCols, .5, 1)};
|
|
|
|
std::unique_ptr<GradientBooster> p_gbm {
|
|
GradientBooster::Create("gbtree", &ctx, &mparam)};
|
|
auto& gbtree = dynamic_cast<gbm::GBTree&> (*p_gbm);
|
|
|
|
gbtree.Configure({{"tree_method", "hist"}});
|
|
auto p_m = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix();
|
|
auto gpair = GenerateRandomGradients(kRows);
|
|
PredictionCacheEntry out_predictions;
|
|
gbtree.DoBoost(p_m.get(), &gpair, &out_predictions, nullptr);
|
|
|
|
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 0, 0);
|
|
ASSERT_EQ(1, out_predictions.version);
|
|
std::vector<float> first_iter = out_predictions.predictions.HostVector();
|
|
// Add 1 more boosted round
|
|
gbtree.DoBoost(p_m.get(), &gpair, &out_predictions, nullptr);
|
|
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 0, 0);
|
|
ASSERT_EQ(2, out_predictions.version);
|
|
// Update the cache for all rounds
|
|
out_predictions.version = 0;
|
|
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 0, 0);
|
|
ASSERT_EQ(2, out_predictions.version);
|
|
|
|
gbtree.DoBoost(p_m.get(), &gpair, &out_predictions, nullptr);
|
|
// drop the cache.
|
|
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 1, 2);
|
|
ASSERT_EQ(0, out_predictions.version);
|
|
// half open set [1, 3)
|
|
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 1, 3);
|
|
ASSERT_EQ(0, out_predictions.version);
|
|
// iteration end
|
|
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 0, 2);
|
|
ASSERT_EQ(2, out_predictions.version);
|
|
// restart the cache when end iteration is smaller than cache version
|
|
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 0, 1);
|
|
ASSERT_EQ(1, out_predictions.version);
|
|
ASSERT_EQ(out_predictions.predictions.HostVector(), first_iter);
|
|
}
|
|
|
|
TEST(GBTree, WrongUpdater) {
|
|
size_t constexpr kRows = 17;
|
|
size_t constexpr kCols = 15;
|
|
|
|
auto p_dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
|
|
|
|
p_dmat->Info().labels.Reshape(kRows);
|
|
|
|
auto learner = std::unique_ptr<Learner>(Learner::Create({p_dmat}));
|
|
// Hist can not be used for updating tree.
|
|
learner->SetParams(Args{{"tree_method", "hist"}, {"process_type", "update"}});
|
|
ASSERT_THROW(learner->UpdateOneIter(0, p_dmat), dmlc::Error);
|
|
// Prune can not be used for learning new tree.
|
|
learner->SetParams(
|
|
Args{{"tree_method", "prune"}, {"process_type", "default"}});
|
|
ASSERT_THROW(learner->UpdateOneIter(0, p_dmat), dmlc::Error);
|
|
}
|
|
|
|
#ifdef XGBOOST_USE_CUDA
|
|
TEST(GBTree, ChoosePredictor) {
|
|
// The test ensures data don't get pulled into device.
|
|
size_t constexpr kRows = 17;
|
|
size_t constexpr kCols = 15;
|
|
|
|
auto p_dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
|
|
|
|
auto& data = (*(p_dmat->GetBatches<SparsePage>().begin())).data;
|
|
p_dmat->Info().labels.Reshape(kRows);
|
|
|
|
auto learner = std::unique_ptr<Learner>(Learner::Create({p_dmat}));
|
|
learner->SetParams(Args{{"tree_method", "gpu_hist"}, {"gpu_id", "0"}});
|
|
for (size_t i = 0; i < 4; ++i) {
|
|
learner->UpdateOneIter(i, p_dmat);
|
|
}
|
|
ASSERT_TRUE(data.HostCanWrite());
|
|
dmlc::TemporaryDirectory tempdir;
|
|
const std::string fname = tempdir.path + "/model_param.bst";
|
|
|
|
{
|
|
std::unique_ptr<dmlc::Stream> fo(dmlc::Stream::Create(fname.c_str(), "w"));
|
|
learner->Save(fo.get());
|
|
}
|
|
|
|
// a new learner
|
|
learner = std::unique_ptr<Learner>(Learner::Create({p_dmat}));
|
|
{
|
|
std::unique_ptr<dmlc::Stream> fi(dmlc::Stream::Create(fname.c_str(), "r"));
|
|
learner->Load(fi.get());
|
|
}
|
|
learner->SetParams(Args{{"tree_method", "gpu_hist"}, {"gpu_id", "0"}});
|
|
for (size_t i = 0; i < 4; ++i) {
|
|
learner->UpdateOneIter(i, p_dmat);
|
|
}
|
|
ASSERT_TRUE(data.HostCanWrite());
|
|
|
|
// pull data into device.
|
|
data.HostVector();
|
|
data.SetDevice(0);
|
|
data.DeviceSpan();
|
|
ASSERT_FALSE(data.HostCanWrite());
|
|
|
|
// another new learner
|
|
learner = std::unique_ptr<Learner>(Learner::Create({p_dmat}));
|
|
learner->SetParams(Args{{"tree_method", "gpu_hist"}, {"gpu_id", "0"}});
|
|
for (size_t i = 0; i < 4; ++i) {
|
|
learner->UpdateOneIter(i, p_dmat);
|
|
}
|
|
// data is not pulled back into host
|
|
ASSERT_FALSE(data.HostCanWrite());
|
|
}
|
|
#endif // XGBOOST_USE_CUDA
|
|
|
|
// Some other parts of test are in `Tree.JsonIO'.
|
|
TEST(GBTree, JsonIO) {
|
|
size_t constexpr kRows = 16, kCols = 16;
|
|
|
|
Context ctx;
|
|
LearnerModelParam mparam{MakeMP(kCols, .5, 1)};
|
|
|
|
std::unique_ptr<GradientBooster> gbm {
|
|
CreateTrainedGBM("gbtree", Args{}, kRows, kCols, &mparam, &ctx) };
|
|
|
|
Json model {Object()};
|
|
model["model"] = Object();
|
|
auto& j_model = model["model"];
|
|
|
|
model["config"] = Object();
|
|
auto& j_param = model["config"];
|
|
|
|
gbm->SaveModel(&j_model);
|
|
gbm->SaveConfig(&j_param);
|
|
|
|
std::string model_str;
|
|
Json::Dump(model, &model_str);
|
|
|
|
model = Json::Load({model_str.c_str(), model_str.size()});
|
|
ASSERT_EQ(get<String>(model["model"]["name"]), "gbtree");
|
|
|
|
auto const& gbtree_model = model["model"]["model"];
|
|
ASSERT_EQ(get<Array>(gbtree_model["trees"]).size(), 1ul);
|
|
ASSERT_EQ(get<Integer>(get<Object>(get<Array>(gbtree_model["trees"]).front()).at("id")), 0);
|
|
ASSERT_EQ(get<Array>(gbtree_model["tree_info"]).size(), 1ul);
|
|
|
|
auto j_train_param = model["config"]["gbtree_model_param"];
|
|
ASSERT_EQ(get<String>(j_train_param["num_parallel_tree"]), "1");
|
|
}
|
|
|
|
TEST(Dart, JsonIO) {
|
|
size_t constexpr kRows = 16, kCols = 16;
|
|
|
|
Context ctx;
|
|
LearnerModelParam mparam{MakeMP(kCols, .5, 1)};
|
|
|
|
std::unique_ptr<GradientBooster> gbm{
|
|
CreateTrainedGBM("dart", Args{}, kRows, kCols, &mparam, &ctx)};
|
|
|
|
Json model {Object()};
|
|
model["model"] = Object();
|
|
auto& j_model = model["model"];
|
|
model["config"] = Object();
|
|
|
|
auto& j_param = model["config"];
|
|
|
|
gbm->SaveModel(&j_model);
|
|
gbm->SaveConfig(&j_param);
|
|
|
|
std::string model_str;
|
|
Json::Dump(model, &model_str);
|
|
|
|
model = Json::Load({model_str.c_str(), model_str.size()});
|
|
|
|
ASSERT_EQ(get<String>(model["model"]["name"]), "dart") << model;
|
|
ASSERT_EQ(get<String>(model["config"]["name"]), "dart");
|
|
ASSERT_TRUE(IsA<Object>(model["model"]["gbtree"]));
|
|
ASSERT_NE(get<Array>(model["model"]["weight_drop"]).size(), 0ul);
|
|
}
|
|
|
|
namespace {
|
|
class Dart : public testing::TestWithParam<char const*> {
|
|
public:
|
|
void Run(std::string predictor) {
|
|
size_t constexpr kRows = 16, kCols = 10;
|
|
|
|
HostDeviceVector<float> data;
|
|
auto rng = RandomDataGenerator(kRows, kCols, 0);
|
|
if (predictor == "gpu_predictor") {
|
|
rng.Device(0);
|
|
}
|
|
auto array_str = rng.GenerateArrayInterface(&data);
|
|
auto p_mat = GetDMatrixFromData(data.HostVector(), kRows, kCols);
|
|
|
|
std::vector<bst_float> labels(kRows);
|
|
for (size_t i = 0; i < kRows; ++i) {
|
|
labels[i] = i % 2;
|
|
}
|
|
p_mat->SetInfo("label", labels.data(), DataType::kFloat32, kRows);
|
|
|
|
auto learner = std::unique_ptr<Learner>(Learner::Create({p_mat}));
|
|
learner->SetParam("booster", "dart");
|
|
learner->SetParam("rate_drop", "0.5");
|
|
learner->Configure();
|
|
|
|
for (size_t i = 0; i < 16; ++i) {
|
|
learner->UpdateOneIter(i, p_mat);
|
|
}
|
|
|
|
learner->SetParam("predictor", predictor);
|
|
|
|
HostDeviceVector<float> predts_training;
|
|
learner->Predict(p_mat, false, &predts_training, 0, 0, true);
|
|
|
|
HostDeviceVector<float>* inplace_predts;
|
|
std::shared_ptr<data::DMatrixProxy> x{new data::DMatrixProxy{}};
|
|
if (predictor == "gpu_predictor") {
|
|
x->SetCUDAArray(array_str.c_str());
|
|
} else {
|
|
x->SetArrayData(array_str.c_str());
|
|
}
|
|
learner->InplacePredict(x, PredictionType::kValue, std::numeric_limits<float>::quiet_NaN(),
|
|
&inplace_predts, 0, 0);
|
|
CHECK(inplace_predts);
|
|
|
|
HostDeviceVector<float> predts_inference;
|
|
learner->Predict(p_mat, false, &predts_inference, 0, 0, false);
|
|
|
|
auto const& h_predts_training = predts_training.ConstHostVector();
|
|
auto const& h_predts_inference = predts_inference.ConstHostVector();
|
|
auto const& h_inplace_predts = inplace_predts->HostVector();
|
|
ASSERT_EQ(h_predts_training.size(), h_predts_inference.size());
|
|
ASSERT_EQ(h_inplace_predts.size(), h_predts_inference.size());
|
|
for (size_t i = 0; i < predts_inference.Size(); ++i) {
|
|
// Inference doesn't drop tree.
|
|
ASSERT_GT(std::abs(h_predts_training[i] - h_predts_inference[i]), kRtEps * 10);
|
|
// Inplace prediction is inference.
|
|
ASSERT_LT(h_inplace_predts[i] - h_predts_inference[i], kRtEps / 10);
|
|
}
|
|
}
|
|
};
|
|
} // anonymous namespace
|
|
|
|
TEST_P(Dart, Prediction) { this->Run(GetParam()); }
|
|
|
|
#if defined(XGBOOST_USE_CUDA)
|
|
INSTANTIATE_TEST_SUITE_P(PredictorTypes, Dart,
|
|
testing::Values("auto", "cpu_predictor", "gpu_predictor"));
|
|
#else
|
|
INSTANTIATE_TEST_SUITE_P(PredictorTypes, Dart, testing::Values("auto", "cpu_predictor"));
|
|
#endif // defined(XGBOOST_USE_CUDA)
|
|
|
|
|
|
std::pair<Json, Json> TestModelSlice(std::string booster) {
|
|
size_t constexpr kRows = 1000, kCols = 100, kForest = 2, kClasses = 3;
|
|
auto m = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix(true, false, kClasses);
|
|
|
|
int32_t kIters = 10;
|
|
std::unique_ptr<Learner> learner {
|
|
Learner::Create({m})
|
|
};
|
|
learner->SetParams(Args{{"booster", booster},
|
|
{"tree_method", "hist"},
|
|
{"num_parallel_tree", std::to_string(kForest)},
|
|
{"num_class", std::to_string(kClasses)},
|
|
{"subsample", "0.5"},
|
|
{"max_depth", "2"}});
|
|
|
|
for (auto i = 0; i < kIters; ++i) {
|
|
learner->UpdateOneIter(i, m);
|
|
}
|
|
|
|
Json model{Object()};
|
|
Json config{Object()};
|
|
learner->SaveModel(&model);
|
|
learner->SaveConfig(&config);
|
|
bool out_of_bound = false;
|
|
|
|
size_t constexpr kSliceStart = 2, kSliceEnd = 8, kStep = 3;
|
|
std::unique_ptr<Learner> sliced {learner->Slice(kSliceStart, kSliceEnd, kStep, &out_of_bound)};
|
|
Json sliced_model{Object()};
|
|
sliced->SaveModel(&sliced_model);
|
|
|
|
auto get_shape = [&](Json const& model) {
|
|
if (booster == "gbtree") {
|
|
return get<Object const>(model["learner"]["gradient_booster"]["model"]["gbtree_model_param"]);
|
|
} else {
|
|
return get<Object const>(model["learner"]["gradient_booster"]["gbtree"]["model"]["gbtree_model_param"]);
|
|
}
|
|
};
|
|
|
|
auto const& model_shape = get_shape(sliced_model);
|
|
CHECK_EQ(get<String const>(model_shape.at("num_trees")), std::to_string(2 * kClasses * kForest));
|
|
|
|
Json sliced_config {Object()};
|
|
sliced->SaveConfig(&sliced_config);
|
|
// Only num trees is changed
|
|
if (booster == "gbtree") {
|
|
sliced_config["learner"]["gradient_booster"]["gbtree_model_param"]["num_trees"] = String("60");
|
|
} else {
|
|
sliced_config["learner"]["gradient_booster"]["gbtree"]["gbtree_model_param"]["num_trees"] =
|
|
String("60");
|
|
}
|
|
CHECK_EQ(sliced_config, config);
|
|
|
|
auto get_trees = [&](Json const& model) {
|
|
if (booster == "gbtree") {
|
|
return get<Array const>(model["learner"]["gradient_booster"]["model"]["trees"]);
|
|
} else {
|
|
return get<Array const>(model["learner"]["gradient_booster"]["gbtree"]["model"]["trees"]);
|
|
}
|
|
};
|
|
|
|
auto get_info = [&](Json const& model) {
|
|
if (booster == "gbtree") {
|
|
return get<Array const>(model["learner"]["gradient_booster"]["model"]["tree_info"]);
|
|
} else {
|
|
return get<Array const>(model["learner"]["gradient_booster"]["gbtree"]["model"]["tree_info"]);
|
|
}
|
|
};
|
|
|
|
auto const &sliced_trees = get_trees(sliced_model);
|
|
CHECK_EQ(sliced_trees.size(), 2 * kClasses * kForest);
|
|
|
|
auto constexpr kLayerSize = kClasses * kForest;
|
|
auto const &sliced_info = get_info(sliced_model);
|
|
|
|
for (size_t layer = 0; layer < 2; ++layer) {
|
|
for (size_t j = 0; j < kClasses; ++j) {
|
|
for (size_t k = 0; k < kForest; ++k) {
|
|
auto idx = layer * kLayerSize + j * kForest + k;
|
|
auto const &group = get<Integer const>(sliced_info.at(idx));
|
|
CHECK_EQ(static_cast<size_t>(group), j);
|
|
}
|
|
}
|
|
}
|
|
|
|
auto const& trees = get_trees(model);
|
|
|
|
// Sliced layers are [2, 5]
|
|
auto begin = kLayerSize * kSliceStart;
|
|
auto end = begin + kLayerSize;
|
|
auto j = 0;
|
|
for (size_t i = begin; i < end; ++i) {
|
|
Json tree = trees[i];
|
|
tree["id"] = Integer(0); // id is different, we set it to 0 to allow comparison.
|
|
auto sliced_tree = sliced_trees[j];
|
|
sliced_tree["id"] = Integer(0);
|
|
CHECK_EQ(tree, sliced_tree);
|
|
j++;
|
|
}
|
|
|
|
begin = kLayerSize * (kSliceStart + kStep);
|
|
end = begin + kLayerSize;
|
|
for (size_t i = begin; i < end; ++i) {
|
|
Json tree = trees[i];
|
|
tree["id"] = Integer(0);
|
|
auto sliced_tree = sliced_trees[j];
|
|
sliced_tree["id"] = Integer(0);
|
|
CHECK_EQ(tree, sliced_tree);
|
|
j++;
|
|
}
|
|
|
|
// CHECK sliced model doesn't have dependency on the old one
|
|
learner.reset();
|
|
CHECK_EQ(sliced->GetNumFeature(), kCols);
|
|
|
|
return std::make_pair(model, sliced_model);
|
|
}
|
|
|
|
TEST(GBTree, Slice) {
|
|
TestModelSlice("gbtree");
|
|
}
|
|
|
|
TEST(Dart, Slice) {
|
|
Json model, sliced_model;
|
|
std::tie(model, sliced_model) = TestModelSlice("dart");
|
|
auto const& weights = get<Array const>(model["learner"]["gradient_booster"]["weight_drop"]);
|
|
auto const& trees = get<Array const>(model["learner"]["gradient_booster"]["gbtree"]["model"]["trees"]);
|
|
ASSERT_EQ(weights.size(), trees.size());
|
|
}
|
|
|
|
TEST(GBTree, FeatureScore) {
|
|
size_t n_samples = 1000, n_features = 10, n_classes = 4;
|
|
auto m = RandomDataGenerator{n_samples, n_features, 0.5}.GenerateDMatrix(true, false, n_classes);
|
|
|
|
std::unique_ptr<Learner> learner{ Learner::Create({m}) };
|
|
learner->SetParam("num_class", std::to_string(n_classes));
|
|
|
|
learner->Configure();
|
|
for (size_t i = 0; i < 2; ++i) {
|
|
learner->UpdateOneIter(i, m);
|
|
}
|
|
|
|
std::vector<bst_feature_t> features_weight;
|
|
std::vector<float> scores_weight;
|
|
learner->CalcFeatureScore("weight", {}, &features_weight, &scores_weight);
|
|
ASSERT_EQ(features_weight.size(), scores_weight.size());
|
|
ASSERT_LE(features_weight.size(), learner->GetNumFeature());
|
|
ASSERT_TRUE(std::is_sorted(features_weight.begin(), features_weight.end()));
|
|
|
|
auto test_eq = [&learner, &scores_weight](std::string type) {
|
|
std::vector<bst_feature_t> features;
|
|
std::vector<float> scores;
|
|
learner->CalcFeatureScore(type, {}, &features, &scores);
|
|
|
|
std::vector<bst_feature_t> features_total;
|
|
std::vector<float> scores_total;
|
|
learner->CalcFeatureScore("total_" + type, {}, &features_total, &scores_total);
|
|
|
|
for (size_t i = 0; i < scores_weight.size(); ++i) {
|
|
ASSERT_LE(RelError(scores_total[i] / scores[i], scores_weight[i]), kRtEps);
|
|
}
|
|
};
|
|
|
|
test_eq("gain");
|
|
test_eq("cover");
|
|
}
|
|
|
|
TEST(GBTree, PredictRange) {
|
|
size_t n_samples = 1000, n_features = 10, n_classes = 4;
|
|
auto m = RandomDataGenerator{n_samples, n_features, 0.5}.GenerateDMatrix(true, false, n_classes);
|
|
|
|
std::unique_ptr<Learner> learner{Learner::Create({m})};
|
|
learner->SetParam("num_class", std::to_string(n_classes));
|
|
|
|
learner->Configure();
|
|
for (size_t i = 0; i < 2; ++i) {
|
|
learner->UpdateOneIter(i, m);
|
|
}
|
|
HostDeviceVector<float> out_predt;
|
|
ASSERT_THROW(learner->Predict(m, false, &out_predt, 0, 3), dmlc::Error);
|
|
|
|
auto m_1 =
|
|
RandomDataGenerator{n_samples, n_features, 0.5}.GenerateDMatrix(true, false, n_classes);
|
|
HostDeviceVector<float> out_predt_full;
|
|
learner->Predict(m_1, false, &out_predt_full, 0, 0);
|
|
ASSERT_TRUE(std::equal(out_predt.HostVector().begin(), out_predt.HostVector().end(),
|
|
out_predt_full.HostVector().begin()));
|
|
|
|
{
|
|
// inplace predict
|
|
HostDeviceVector<float> raw_storage;
|
|
auto raw = RandomDataGenerator{n_samples, n_features, 0.5}.GenerateArrayInterface(&raw_storage);
|
|
std::shared_ptr<data::DMatrixProxy> x{new data::DMatrixProxy{}};
|
|
x->SetArrayData(raw.data());
|
|
|
|
HostDeviceVector<float>* out_predt;
|
|
learner->InplacePredict(x, PredictionType::kValue, std::numeric_limits<float>::quiet_NaN(),
|
|
&out_predt, 0, 2);
|
|
auto h_out_predt = out_predt->HostVector();
|
|
learner->InplacePredict(x, PredictionType::kValue, std::numeric_limits<float>::quiet_NaN(),
|
|
&out_predt, 0, 0);
|
|
auto h_out_predt_full = out_predt->HostVector();
|
|
|
|
ASSERT_TRUE(std::equal(h_out_predt.begin(), h_out_predt.end(), h_out_predt_full.begin()));
|
|
|
|
ASSERT_THROW(learner->InplacePredict(x, PredictionType::kValue,
|
|
std::numeric_limits<float>::quiet_NaN(), &out_predt, 0, 3),
|
|
dmlc::Error);
|
|
}
|
|
}
|
|
} // namespace xgboost
|