54 lines
2.0 KiB
R
54 lines
2.0 KiB
R
#' Show importance of features in a model
|
|
#'
|
|
#' Read a xgboost model in text file format. Return a data.table of the features with their weight.
|
|
#'
|
|
#' @importFrom data.table data.table
|
|
#' @importFrom magrittr %>%
|
|
#' @importFrom data.table :=
|
|
#' @param feature_names names of each feature as a character vector. Can be extracted from a sparse matrix.
|
|
#' @param filename_dump the name of the text file.
|
|
#'
|
|
#' @examples
|
|
#' data(agaricus.train, package='xgboost')
|
|
#' data(agaricus.test, package='xgboost')
|
|
#'
|
|
#' #Both dataset are list with two items, a sparse matrix and labels (outcome column which will be learned).
|
|
#' #Each column of the sparse Matrix is a feature in one hot encoding format.
|
|
#' train <- agaricus.train
|
|
#' test <- agaricus.test
|
|
#'
|
|
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
|
#' eta = 1, nround = 2,objective = "binary:logistic")
|
|
#' xgb.dump(bst, 'xgb.model.dump')
|
|
#'
|
|
#' #agaricus.test$data@@Dimnames[[2]] represents the column name of the sparse matrix.
|
|
#' xgb.importance(agaricus.test$data@@Dimnames[[2]], 'xgb.model.dump')
|
|
#'
|
|
#' @export
|
|
xgb.importance <- function(feature_names, filename_dump){
|
|
text <- readLines(filename_dump)
|
|
if(text[2] == "bias:"){
|
|
result <- linearDump(feature_names, text)
|
|
} else {
|
|
result <- treeDump(feature_names, text)
|
|
}
|
|
result
|
|
}
|
|
|
|
treeDump <- function(feature_names, text){
|
|
result <- c()
|
|
for(line in text){
|
|
m <- regexec("\\[f.*\\]", line)
|
|
p <- regmatches(line, m)
|
|
if (length(p[[1]]) > 0) {
|
|
splits <- sub("\\]", "", sub("\\[f", "", p[[1]])) %>% strsplit("<")[[1]] %>% as.numeric
|
|
result <- c(result, feature_names[splits[1]+ 1])
|
|
}
|
|
}
|
|
#1. Reduce, 2. %, 3. reorder - bigger top, 4. remove temp col
|
|
data.table(Feature = result)[,.N, by = Feature][, Weight:= N /sum(N)][order(-rank(Weight))][,-2,with=F]
|
|
}
|
|
|
|
linearDump <- function(feature_names, text){
|
|
which(text == "weight:") %>% {a=.+1; text[a:length(text)]} %>% as.numeric %>% data.table(Feature = feature_names, Weight = .)
|
|
} |