xgboost/doc/python/convert_090to100.py
Jiaming Yuan 213f4fa45a
Fix loading old logit model, helper for converting old pickle. (#5281)
* Fix loading old logit model.
* Add a helper script for converting old pickle file.
* Add version as a model parameter.
* Remove the size check in R test to relax the size constraint.
* Add missing R doc for passing linting. Run devtools.
* Cleanup old model IO logic.
* Test compatibility on CI.
* Make the argument as required.
2020-02-13 15:28:13 +08:00

80 lines
2.5 KiB
Python

'''This is a simple script that converts a pickled XGBoost
Scikit-Learn interface object from 0.90 to a native model. Pickle
format is not stable as it's a direct serialization of Python object.
We advice not to use it when stability is needed.
'''
import pickle
import json
import os
import argparse
import numpy as np
import xgboost
import warnings
def save_label_encoder(le):
'''Save the label encoder in XGBClassifier'''
meta = dict()
for k, v in le.__dict__.items():
if isinstance(v, np.ndarray):
meta[k] = v.tolist()
else:
meta[k] = v
return meta
def xgboost_skl_90to100(skl_model):
'''Extract the model and related metadata in SKL model.'''
model = {}
with open(skl_model, 'rb') as fd:
old = pickle.load(fd)
if not isinstance(old, xgboost.XGBModel):
raise TypeError(
'The script only handes Scikit-Learn interface object')
# Save Scikit-Learn specific Python attributes into a JSON document.
for k, v in old.__dict__.items():
if k == '_le':
model[k] = save_label_encoder(v)
elif k == 'classes_':
model[k] = v.tolist()
elif k == '_Booster':
continue
else:
try:
json.dumps({k: v})
model[k] = v
except TypeError:
warnings.warn(str(k) + ' is not saved in Scikit-Learn meta.')
booster = old.get_booster()
# Store the JSON serialization as an attribute
booster.set_attr(scikit_learn=json.dumps(model))
# Save it into a native model.
i = 0
while True:
path = 'xgboost_native_model_from_' + skl_model + '-' + str(i) + '.bin'
if os.path.exists(path):
i += 1
continue
booster.save_model(path)
break
if __name__ == '__main__':
assert xgboost.__version__ != '1.0.0', ('Please use the XGBoost version'
' that generates this pickle.')
parser = argparse.ArgumentParser(
description=('A simple script to convert pickle generated by'
' XGBoost 0.90 to XGBoost 1.0.0 model (not pickle).'))
parser.add_argument(
'--old-pickle',
type=str,
help='Path to old pickle file of Scikit-Learn interface object. '
'Will output a native model converted from this pickle file',
required=True)
args = parser.parse_args()
xgboost_skl_90to100(args.old_pickle)