xgboost/src/data/gradient_index.h
Jiaming Yuan 53fc17578f
Use std::uint64_t for row index. (#10120)
- Use std::uint64_t instead of size_t to avoid implementation-defined type.
- Rename to bst_idx_t, to account for other types of indexing.
- Small cleanup to the base header.
2024-03-15 18:43:49 +08:00

305 lines
12 KiB
C++

/**
* Copyright 2017-2023 by XGBoost Contributors
* \brief Data type for fast histogram aggregation.
*/
#ifndef XGBOOST_DATA_GRADIENT_INDEX_H_
#define XGBOOST_DATA_GRADIENT_INDEX_H_
#include <algorithm> // for min
#include <atomic> // for atomic
#include <cinttypes> // for uint32_t
#include <cstddef> // for size_t
#include <memory> // for make_unique
#include <vector>
#include "../common/categorical.h"
#include "../common/error_msg.h" // for InfInData
#include "../common/hist_util.h"
#include "../common/numeric.h"
#include "../common/ref_resource_view.h" // for RefResourceView
#include "../common/threading_utils.h"
#include "../common/transform_iterator.h" // for MakeIndexTransformIter
#include "adapter.h"
#include "xgboost/base.h"
#include "xgboost/data.h"
namespace xgboost {
namespace common {
class ColumnMatrix;
class AlignedFileWriteStream;
} // namespace common
/**
* @brief preprocessed global index matrix, in CSR format.
*
* Transform floating values to integer index in histogram This is a global histogram
* index for CPU histogram. On GPU ellpack page is used.
*/
class GHistIndexMatrix {
// Get the size of each row
template <typename AdapterBatchT>
auto GetRowCounts(AdapterBatchT const& batch, float missing, int32_t n_threads) {
std::vector<size_t> valid_counts(batch.Size(), 0);
common::ParallelFor(batch.Size(), n_threads, [&](size_t i) {
auto line = batch.GetLine(i);
for (size_t j = 0; j < line.Size(); ++j) {
data::COOTuple elem = line.GetElement(j);
if (data::IsValidFunctor {missing}(elem)) {
valid_counts[i]++;
}
}
});
return valid_counts;
}
/**
* \brief Push a page into index matrix, the function is only necessary because hist has
* partial support for external memory.
*/
void PushBatch(SparsePage const& batch, common::Span<FeatureType const> ft, int32_t n_threads);
template <typename Batch, typename BinIdxType, typename GetOffset, typename IsValid>
void SetIndexData(common::Span<BinIdxType> index_data_span, size_t rbegin,
common::Span<FeatureType const> ft, size_t batch_threads, Batch const& batch,
IsValid&& is_valid, size_t nbins, GetOffset&& get_offset) {
auto batch_size = batch.Size();
BinIdxType* index_data = index_data_span.data();
auto const& ptrs = cut.Ptrs();
auto const& values = cut.Values();
std::atomic<bool> valid{true};
common::ParallelFor(batch_size, batch_threads, [&](size_t i) {
auto line = batch.GetLine(i);
size_t ibegin = row_ptr[rbegin + i]; // index of first entry for current block
size_t k = 0;
auto tid = omp_get_thread_num();
for (size_t j = 0; j < line.Size(); ++j) {
data::COOTuple elem = line.GetElement(j);
if (is_valid(elem)) {
if (XGBOOST_EXPECT((std::isinf(elem.value)), false)) {
valid = false;
}
bst_bin_t bin_idx{-1};
if (common::IsCat(ft, elem.column_idx)) {
bin_idx = cut.SearchCatBin(elem.value, elem.column_idx, ptrs, values);
} else {
bin_idx = cut.SearchBin(elem.value, elem.column_idx, ptrs, values);
}
index_data[ibegin + k] = get_offset(bin_idx, j);
++hit_count_tloc_[tid * nbins + bin_idx];
++k;
}
}
});
CHECK(valid) << error::InfInData();
}
// Gather hit_count from all threads
void GatherHitCount(int32_t n_threads, bst_bin_t n_bins_total) {
CHECK_EQ(hit_count.size(), n_bins_total);
common::ParallelFor(n_bins_total, n_threads, [&](bst_omp_uint idx) {
for (int32_t tid = 0; tid < n_threads; ++tid) {
hit_count[idx] += hit_count_tloc_[tid * n_bins_total + idx];
hit_count_tloc_[tid * n_bins_total + idx] = 0; // reset for next batch
}
});
}
template <typename Batch, typename IsValid>
void PushBatchImpl(int32_t n_threads, Batch const& batch, size_t rbegin, IsValid&& is_valid,
common::Span<FeatureType const> ft) {
// The number of threads is pegged to the batch size. If the OMP block is parallelized
// on anything other than the batch/block size, it should be reassigned
size_t batch_threads =
std::max(static_cast<size_t>(1), std::min(batch.Size(), static_cast<size_t>(n_threads)));
auto n_bins_total = cut.TotalBins();
const size_t n_index = row_ptr[rbegin + batch.Size()]; // number of entries in this page
ResizeIndex(n_index, isDense_);
if (isDense_) {
index.SetBinOffset(cut.Ptrs());
}
if (isDense_) {
common::DispatchBinType(index.GetBinTypeSize(), [&](auto dtype) {
using T = decltype(dtype);
common::Span<T> index_data_span = {index.data<T>(), index.Size()};
SetIndexData(index_data_span, rbegin, ft, batch_threads, batch, is_valid, n_bins_total,
index.MakeCompressor<T>());
});
} else {
common::Span<uint32_t> index_data_span = {index.data<uint32_t>(), n_index};
// no compression
SetIndexData(index_data_span, rbegin, ft, batch_threads, batch, is_valid, n_bins_total,
[](auto idx, auto) { return idx; });
}
this->GatherHitCount(n_threads, n_bins_total);
}
public:
/** @brief row pointer to rows by element position */
common::RefResourceView<std::size_t> row_ptr;
/** @brief data storage for index. */
common::RefResourceView<std::uint8_t> data;
/** @brief The histogram index. */
common::Index index;
/** @brief hit count of each index, used for constructing the ColumnMatrix */
common::RefResourceView<std::size_t> hit_count;
/** @brief The corresponding cuts */
common::HistogramCuts cut;
/** @brief max_bin for each feature. */
bst_bin_t max_numeric_bins_per_feat;
/** @brief base row index for current page (used by external memory) */
bst_idx_t base_rowid{0};
[[nodiscard]] bst_bin_t MaxNumBinPerFeat() const {
return std::max(static_cast<bst_bin_t>(cut.MaxCategory() + 1), max_numeric_bins_per_feat);
}
~GHistIndexMatrix();
/**
* \brief Constrcutor for SimpleDMatrix.
*/
GHistIndexMatrix(Context const* ctx, DMatrix* x, bst_bin_t max_bins_per_feat,
double sparse_thresh, bool sorted_sketch, common::Span<float const> hess = {});
/**
* \brief Constructor for Iterative DMatrix. Initialize basic information and prepare
* for push batch.
*/
GHistIndexMatrix(MetaInfo const& info, common::HistogramCuts&& cuts, bst_bin_t max_bin_per_feat);
/**
* \brief Constructor fro Iterative DMatrix where we might copy an existing ellpack page
* to host gradient index.
*/
GHistIndexMatrix(Context const* ctx, MetaInfo const& info, EllpackPage const& page,
BatchParam const& p);
/**
* \brief Constructor for external memory.
*/
GHistIndexMatrix(SparsePage const& page, common::Span<FeatureType const> ft,
common::HistogramCuts cuts, int32_t max_bins_per_feat, bool is_dense,
double sparse_thresh, int32_t n_threads);
GHistIndexMatrix(); // also for ext mem, empty ctor so that we can read the cache back.
template <typename Batch>
void PushAdapterBatch(Context const* ctx, size_t rbegin, size_t prev_sum, Batch const& batch,
float missing, common::Span<FeatureType const> ft, double sparse_thresh,
size_t n_samples_total) {
auto n_bins_total = cut.TotalBins();
hit_count_tloc_.clear();
hit_count_tloc_.resize(ctx->Threads() * n_bins_total, 0);
auto n_threads = ctx->Threads();
auto valid_counts = GetRowCounts(batch, missing, n_threads);
auto it = common::MakeIndexTransformIter([&](size_t ridx) { return valid_counts[ridx]; });
common::PartialSum(n_threads, it, it + batch.Size(), prev_sum, row_ptr.begin() + rbegin);
auto is_valid = data::IsValidFunctor{missing};
PushBatchImpl(ctx->Threads(), batch, rbegin, is_valid, ft);
if (rbegin + batch.Size() == n_samples_total) {
// finished
CHECK(!std::isnan(sparse_thresh));
this->columns_ = std::make_unique<common::ColumnMatrix>(*this, sparse_thresh);
}
}
// Call ColumnMatrix::PushBatch
template <typename Batch>
void PushAdapterBatchColumns(Context const* ctx, Batch const& batch, float missing,
size_t rbegin);
void ResizeIndex(const size_t n_index, const bool isDense);
void GetFeatureCounts(size_t* counts) const {
auto nfeature = cut.Ptrs().size() - 1;
for (unsigned fid = 0; fid < nfeature; ++fid) {
auto ibegin = cut.Ptrs()[fid];
auto iend = cut.Ptrs()[fid + 1];
for (auto i = ibegin; i < iend; ++i) {
counts[fid] += hit_count[i];
}
}
}
[[nodiscard]] bool IsDense() const { return isDense_; }
void SetDense(bool is_dense) { isDense_ = is_dense; }
/**
* @brief Get the local row index.
*/
[[nodiscard]] std::size_t RowIdx(size_t ridx) const { return row_ptr[ridx - base_rowid]; }
[[nodiscard]] bst_idx_t Size() const { return row_ptr.empty() ? 0 : row_ptr.size() - 1; }
[[nodiscard]] bst_feature_t Features() const { return cut.Ptrs().size() - 1; }
[[nodiscard]] bool ReadColumnPage(common::AlignedResourceReadStream* fi);
[[nodiscard]] std::size_t WriteColumnPage(common::AlignedFileWriteStream* fo) const;
[[nodiscard]] common::ColumnMatrix const& Transpose() const;
[[nodiscard]] bst_bin_t GetGindex(size_t ridx, size_t fidx) const;
[[nodiscard]] float GetFvalue(size_t ridx, size_t fidx, bool is_cat) const;
[[nodiscard]] float GetFvalue(std::vector<std::uint32_t> const& ptrs,
std::vector<float> const& values, std::vector<float> const& mins,
bst_idx_t ridx, bst_feature_t fidx, bool is_cat) const;
[[nodiscard]] common::HistogramCuts& Cuts() { return cut; }
[[nodiscard]] common::HistogramCuts const& Cuts() const { return cut; }
private:
std::unique_ptr<common::ColumnMatrix> columns_;
std::vector<size_t> hit_count_tloc_;
bool isDense_;
};
/**
* \brief Helper for recovering feature index from row-based storage of histogram
* bin. (`GHistIndexMatrix`).
*
* \param assign A callback function that takes bin index, index into the whole batch, row
* index and feature index
*/
template <typename Fn>
void AssignColumnBinIndex(GHistIndexMatrix const& page, Fn&& assign) {
auto const batch_size = page.Size();
auto const& ptrs = page.cut.Ptrs();
std::size_t k{0};
auto dense = page.IsDense();
common::DispatchBinType(page.index.GetBinTypeSize(), [&](auto t) {
using BinT = decltype(t);
auto const& index = page.index;
for (std::size_t ridx = 0; ridx < batch_size; ++ridx) {
auto r_beg = page.row_ptr[ridx];
auto r_end = page.row_ptr[ridx + 1];
bst_feature_t fidx{0};
if (dense) {
// compressed, use the operator to obtain the true value.
for (std::size_t j = r_beg; j < r_end; ++j) {
bst_feature_t fidx = j - r_beg;
std::uint32_t bin_idx = index[k];
assign(bin_idx, k, ridx, fidx);
++k;
}
} else {
// not compressed
auto const* row_index = index.data<BinT>() + page.row_ptr[page.base_rowid];
for (std::size_t j = r_beg; j < r_end; ++j) {
std::uint32_t bin_idx = row_index[k];
// find the feature index for current bin.
while (bin_idx >= ptrs[fidx + 1]) {
fidx++;
}
assign(bin_idx, k, ridx, fidx);
++k;
}
}
}
});
}
} // namespace xgboost
#endif // XGBOOST_DATA_GRADIENT_INDEX_H_