* Add checks for group size. * Simple docs. * Search group index during hist cut matrix initialization. Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com> Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
96 lines
3.2 KiB
C++
96 lines
3.2 KiB
C++
// Copyright by Contributors
|
|
#include <gtest/gtest.h>
|
|
#include <vector>
|
|
#include "helpers.h"
|
|
#include "xgboost/learner.h"
|
|
|
|
namespace xgboost {
|
|
|
|
TEST(Learner, Basic) {
|
|
typedef std::pair<std::string, std::string> Arg;
|
|
auto args = {Arg("tree_method", "exact")};
|
|
auto mat_ptr = CreateDMatrix(10, 10, 0);
|
|
std::vector<std::shared_ptr<xgboost::DMatrix>> mat = {*mat_ptr};
|
|
auto learner = std::unique_ptr<Learner>(Learner::Create(mat));
|
|
learner->Configure(args);
|
|
|
|
delete mat_ptr;
|
|
}
|
|
|
|
TEST(Learner, SelectTreeMethod) {
|
|
using Arg = std::pair<std::string, std::string>;
|
|
auto mat_ptr = CreateDMatrix(10, 10, 0);
|
|
std::vector<std::shared_ptr<xgboost::DMatrix>> mat = {*mat_ptr};
|
|
auto learner = std::unique_ptr<Learner>(Learner::Create(mat));
|
|
|
|
// Test if `tree_method` can be set
|
|
learner->Configure({Arg("tree_method", "approx")});
|
|
ASSERT_EQ(learner->GetConfigurationArguments().at("updater"),
|
|
"grow_histmaker,prune");
|
|
learner->Configure({Arg("tree_method", "exact")});
|
|
ASSERT_EQ(learner->GetConfigurationArguments().at("updater"),
|
|
"grow_colmaker,prune");
|
|
learner->Configure({Arg("tree_method", "hist")});
|
|
ASSERT_EQ(learner->GetConfigurationArguments().at("updater"),
|
|
"grow_quantile_histmaker");
|
|
learner->Configure({Arg{"booster", "dart"}, Arg{"tree_method", "hist"}});
|
|
ASSERT_EQ(learner->GetConfigurationArguments().at("updater"),
|
|
"grow_quantile_histmaker");
|
|
#ifdef XGBOOST_USE_CUDA
|
|
learner->Configure({Arg("tree_method", "gpu_exact")});
|
|
ASSERT_EQ(learner->GetConfigurationArguments().at("updater"),
|
|
"grow_gpu,prune");
|
|
learner->Configure({Arg("tree_method", "gpu_hist")});
|
|
ASSERT_EQ(learner->GetConfigurationArguments().at("updater"),
|
|
"grow_gpu_hist");
|
|
learner->Configure({Arg{"booster", "dart"}, Arg{"tree_method", "gpu_hist"}});
|
|
ASSERT_EQ(learner->GetConfigurationArguments().at("updater"),
|
|
"grow_gpu_hist");
|
|
#endif
|
|
|
|
delete mat_ptr;
|
|
}
|
|
|
|
TEST(Learner, CheckGroup) {
|
|
using Arg = std::pair<std::string, std::string>;
|
|
size_t constexpr kNumGroups = 4;
|
|
size_t constexpr kNumRows = 17;
|
|
size_t constexpr kNumCols = 15;
|
|
|
|
auto pp_mat = CreateDMatrix(kNumRows, kNumCols, 0);
|
|
auto& p_mat = *pp_mat;
|
|
std::vector<bst_float> weight(kNumGroups);
|
|
std::vector<bst_int> group(kNumGroups);
|
|
group[0] = 2;
|
|
group[1] = 3;
|
|
group[2] = 7;
|
|
group[3] = 5;
|
|
std::vector<bst_float> labels (kNumRows);
|
|
for (size_t i = 0; i < kNumRows; ++i) {
|
|
labels[i] = i % 2;
|
|
}
|
|
|
|
p_mat->Info().SetInfo(
|
|
"weight", static_cast<void*>(weight.data()), DataType::kFloat32, kNumGroups);
|
|
p_mat->Info().SetInfo(
|
|
"group", group.data(), DataType::kUInt32, kNumGroups);
|
|
p_mat->Info().SetInfo("label", labels.data(), DataType::kFloat32, kNumRows);
|
|
|
|
std::vector<std::shared_ptr<xgboost::DMatrix>> mat = {p_mat};
|
|
auto learner = std::unique_ptr<Learner>(Learner::Create(mat));
|
|
learner->Configure({Arg{"objective", "rank:pairwise"}});
|
|
learner->InitModel();
|
|
|
|
EXPECT_NO_THROW(learner->UpdateOneIter(0, p_mat.get()));
|
|
|
|
group.resize(kNumGroups+1);
|
|
group[3] = 4;
|
|
group[4] = 1;
|
|
p_mat->Info().SetInfo("group", group.data(), DataType::kUInt32, kNumGroups+1);
|
|
EXPECT_ANY_THROW(learner->UpdateOneIter(0, p_mat.get()));
|
|
|
|
delete pp_mat;
|
|
}
|
|
|
|
} // namespace xgboost
|