* Create pyproject.toml * Implement a custom build backend (see below) in packager directory. Build logic from setup.py has been refactored and migrated into the new backend. * Tested: pip wheel . (build wheel), python -m build --sdist . (source distribution)
43 lines
1.1 KiB
TOML
43 lines
1.1 KiB
TOML
[build-system]
|
|
requires = [
|
|
"hatchling>=1.12.1"
|
|
]
|
|
backend-path = ["."]
|
|
build-backend = "packager.pep517"
|
|
|
|
[project]
|
|
name = "xgboost"
|
|
version = "2.0.0-dev"
|
|
authors = [
|
|
{name = "Hyunsu Cho", email = "chohyu01@cs.washington.edu"},
|
|
{name = "Jiaming Yuan", email = "jm.yuan@outlook.com"}
|
|
]
|
|
description = "XGBoost Python Package"
|
|
readme = {file = "README.rst", content-type = "text/x-rst"}
|
|
requires-python = ">=3.8"
|
|
license = {text = "Apache-2.0"}
|
|
classifiers = [
|
|
"License :: OSI Approved :: Apache Software License",
|
|
"Development Status :: 5 - Production/Stable",
|
|
"Operating System :: OS Independent",
|
|
"Programming Language :: Python",
|
|
"Programming Language :: Python :: 3",
|
|
"Programming Language :: Python :: 3.8",
|
|
"Programming Language :: Python :: 3.9",
|
|
"Programming Language :: Python :: 3.10"
|
|
]
|
|
dependencies = [
|
|
"numpy",
|
|
"scipy"
|
|
]
|
|
|
|
[project.optional-dependencies]
|
|
pandas = ["pandas"]
|
|
scikit-learn = ["scikit-learn"]
|
|
dask = ["dask", "pandas", "distributed"]
|
|
datatable = ["datatable"]
|
|
plotting = ["graphviz", "matplotlib"]
|
|
pyspark = ["pyspark", "scikit-learn", "cloudpickle"]
|
|
|
|
[tool.hatch.build.targets.wheel.hooks.custom]
|