* Move thread local entry into Learner. This is an attempt to workaround CUDA context issue in static variable, where the CUDA context can be released before device vector. * Add PredictionEntry to thread local entry. This eliminates one copy of prediction vector. * Don't define CUDA C API in a namespace.
149 lines
5.8 KiB
Python
149 lines
5.8 KiB
Python
import numpy as np
|
|
import xgboost as xgb
|
|
import sys
|
|
import pytest
|
|
|
|
sys.path.append("tests/python")
|
|
import testing as tm
|
|
|
|
|
|
def dmatrix_from_cudf(input_type, missing=np.NAN):
|
|
'''Test constructing DMatrix from cudf'''
|
|
import cudf
|
|
import pandas as pd
|
|
|
|
kRows = 80
|
|
kCols = 3
|
|
|
|
na = np.random.randn(kRows, kCols)
|
|
na[:, 0:2] = na[:, 0:2].astype(input_type)
|
|
|
|
na[5, 0] = missing
|
|
na[3, 1] = missing
|
|
|
|
pa = pd.DataFrame({'0': na[:, 0],
|
|
'1': na[:, 1],
|
|
'2': na[:, 2].astype(np.int32)})
|
|
|
|
np_label = np.random.randn(kRows).astype(input_type)
|
|
pa_label = pd.DataFrame(np_label)
|
|
|
|
cd = cudf.from_pandas(pa)
|
|
cd_label = cudf.from_pandas(pa_label).iloc[:, 0]
|
|
|
|
dtrain = xgb.DMatrix(cd, missing=missing, label=cd_label)
|
|
assert dtrain.num_col() == kCols
|
|
assert dtrain.num_row() == kRows
|
|
|
|
|
|
class TestFromColumnar:
|
|
'''Tests for constructing DMatrix from data structure conforming Apache
|
|
Arrow specification.'''
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
def test_from_cudf(self):
|
|
'''Test constructing DMatrix from cudf'''
|
|
import cudf
|
|
dmatrix_from_cudf(np.float32, np.NAN)
|
|
dmatrix_from_cudf(np.float64, np.NAN)
|
|
|
|
dmatrix_from_cudf(np.int8, 2)
|
|
dmatrix_from_cudf(np.int32, -2)
|
|
dmatrix_from_cudf(np.int64, -3)
|
|
|
|
cd = cudf.DataFrame({'x': [1, 2, 3], 'y': [0.1, 0.2, 0.3]})
|
|
dtrain = xgb.DMatrix(cd)
|
|
|
|
assert dtrain.feature_names == ['x', 'y']
|
|
assert dtrain.feature_types == ['int', 'float']
|
|
|
|
series = cudf.DataFrame({'x': [1, 2, 3]}).iloc[:, 0]
|
|
assert isinstance(series, cudf.Series)
|
|
dtrain = xgb.DMatrix(series)
|
|
|
|
assert dtrain.feature_names == ['x']
|
|
assert dtrain.feature_types == ['int']
|
|
|
|
with pytest.raises(Exception):
|
|
dtrain = xgb.DMatrix(cd, label=cd)
|
|
|
|
# Test when number of elements is less than 8
|
|
X = cudf.DataFrame({'x': cudf.Series([0, 1, 2, np.NAN, 4],
|
|
dtype=np.int32)})
|
|
dtrain = xgb.DMatrix(X)
|
|
assert dtrain.num_col() == 1
|
|
assert dtrain.num_row() == 5
|
|
|
|
# Boolean is not supported.
|
|
X_boolean = cudf.DataFrame({'x': cudf.Series([True, False])})
|
|
with pytest.raises(Exception):
|
|
dtrain = xgb.DMatrix(X_boolean)
|
|
|
|
y_boolean = cudf.DataFrame({
|
|
'x': cudf.Series([True, False, True, True, True])})
|
|
with pytest.raises(Exception):
|
|
dtrain = xgb.DMatrix(X_boolean, label=y_boolean)
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
def test_cudf_training(self):
|
|
from cudf import DataFrame as df
|
|
import pandas as pd
|
|
np.random.seed(1)
|
|
X = pd.DataFrame(np.random.randn(50, 10))
|
|
y = pd.DataFrame(np.random.randn(50))
|
|
weights = np.random.random(50) + 1.0
|
|
cudf_weights = df.from_pandas(pd.DataFrame(weights))
|
|
base_margin = np.random.random(50)
|
|
cudf_base_margin = df.from_pandas(pd.DataFrame(base_margin))
|
|
|
|
evals_result_cudf = {}
|
|
dtrain_cudf = xgb.DMatrix(df.from_pandas(X), df.from_pandas(y), weight=cudf_weights,
|
|
base_margin=cudf_base_margin)
|
|
params = {'gpu_id': 0}
|
|
xgb.train(params, dtrain_cudf, evals=[(dtrain_cudf, "train")],
|
|
evals_result=evals_result_cudf)
|
|
evals_result_np = {}
|
|
dtrain_np = xgb.DMatrix(X, y, weight=weights, base_margin=base_margin)
|
|
xgb.train(params, dtrain_np, evals=[(dtrain_np, "train")],
|
|
evals_result=evals_result_np)
|
|
assert np.array_equal(evals_result_cudf["train"]["rmse"], evals_result_np["train"]["rmse"])
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
def test_cudf_metainfo(self):
|
|
from cudf import DataFrame as df
|
|
import pandas as pd
|
|
n = 100
|
|
X = np.random.random((n, 2))
|
|
dmat_cudf = xgb.DMatrix(X)
|
|
dmat = xgb.DMatrix(X)
|
|
floats = np.random.random(n)
|
|
uints = np.array([4, 2, 8]).astype("uint32")
|
|
cudf_floats = df.from_pandas(pd.DataFrame(floats))
|
|
cudf_uints = df.from_pandas(pd.DataFrame(uints))
|
|
dmat.set_float_info('weight', floats)
|
|
dmat.set_float_info('label', floats)
|
|
dmat.set_float_info('base_margin', floats)
|
|
dmat.set_uint_info('group', uints)
|
|
dmat_cudf.set_interface_info('weight', cudf_floats)
|
|
dmat_cudf.set_interface_info('label', cudf_floats)
|
|
dmat_cudf.set_interface_info('base_margin', cudf_floats)
|
|
dmat_cudf.set_interface_info('group', cudf_uints)
|
|
|
|
# Test setting info with cudf DataFrame
|
|
assert np.array_equal(dmat.get_float_info('weight'), dmat_cudf.get_float_info('weight'))
|
|
assert np.array_equal(dmat.get_float_info('label'), dmat_cudf.get_float_info('label'))
|
|
assert np.array_equal(dmat.get_float_info('base_margin'),
|
|
dmat_cudf.get_float_info('base_margin'))
|
|
assert np.array_equal(dmat.get_uint_info('group_ptr'), dmat_cudf.get_uint_info('group_ptr'))
|
|
|
|
# Test setting info with cudf Series
|
|
dmat_cudf.set_interface_info('weight', cudf_floats[cudf_floats.columns[0]])
|
|
dmat_cudf.set_interface_info('label', cudf_floats[cudf_floats.columns[0]])
|
|
dmat_cudf.set_interface_info('base_margin', cudf_floats[cudf_floats.columns[0]])
|
|
dmat_cudf.set_interface_info('group', cudf_uints[cudf_uints.columns[0]])
|
|
assert np.array_equal(dmat.get_float_info('weight'), dmat_cudf.get_float_info('weight'))
|
|
assert np.array_equal(dmat.get_float_info('label'), dmat_cudf.get_float_info('label'))
|
|
assert np.array_equal(dmat.get_float_info('base_margin'),
|
|
dmat_cudf.get_float_info('base_margin'))
|
|
assert np.array_equal(dmat.get_uint_info('group_ptr'), dmat_cudf.get_uint_info('group_ptr'))
|