xgboost/tests/python/test_with_dask.py
Jiaming Yuan bcc0277338
Re-implement ROC-AUC. (#6747)
* Re-implement ROC-AUC.

* Binary
* MultiClass
* LTR
* Add documents.

This PR resolves a few issues:
  - Define a value when the dataset is invalid, which can happen if there's an
  empty dataset, or when the dataset contains only positive or negative values.
  - Define ROC-AUC for multi-class classification.
  - Define weighted average value for distributed setting.
  - A correct implementation for learning to rank task.  Previous
  implementation is just binary classification with averaging across groups,
  which doesn't measure ordered learning to rank.
2021-03-20 16:52:40 +08:00

1557 lines
58 KiB
Python

from pathlib import Path
import pickle
import testing as tm
import pytest
import xgboost as xgb
import sys
import numpy as np
import scipy
import json
from typing import List, Tuple, Dict, Optional, Type, Any
import asyncio
from functools import partial
from concurrent.futures import ThreadPoolExecutor
import tempfile
from sklearn.datasets import make_classification
import sklearn
import os
import subprocess
import hypothesis
from hypothesis import given, settings, note, HealthCheck
from test_updaters import hist_parameter_strategy, exact_parameter_strategy
from test_with_sklearn import run_feature_weights, run_data_initialization
from test_predict import verify_leaf_output
if sys.platform.startswith("win"):
pytest.skip("Skipping dask tests on Windows", allow_module_level=True)
if tm.no_dask()['condition']:
pytest.skip(msg=tm.no_dask()['reason'], allow_module_level=True)
from distributed import LocalCluster, Client
from distributed.utils_test import client, loop, cluster_fixture
import dask.dataframe as dd
import dask.array as da
from xgboost.dask import DaskDMatrix
if hasattr(HealthCheck, 'function_scoped_fixture'):
suppress = [HealthCheck.function_scoped_fixture]
else:
suppress = hypothesis.utils.conventions.not_set # type:ignore
kRows = 1000
kCols = 10
kWorkers = 5
def _get_client_workers(client: "Client") -> List[str]:
workers = client.scheduler_info()['workers']
return list(workers.keys())
def generate_array(
with_weights: bool = False
) -> Tuple[xgb.dask._DaskCollection, xgb.dask._DaskCollection,
Optional[xgb.dask._DaskCollection]]:
chunk_size = 20
rng = da.random.RandomState(1994)
X = rng.random_sample((kRows, kCols), chunks=(chunk_size, -1))
y = rng.random_sample(kRows, chunks=chunk_size)
if with_weights:
w = rng.random_sample(kRows, chunks=chunk_size)
return X, y, w
return X, y, None
def test_from_dask_dataframe() -> None:
with LocalCluster(n_workers=kWorkers) as cluster:
with Client(cluster) as client:
X, y, _ = generate_array()
X = dd.from_dask_array(X)
y = dd.from_dask_array(y)
dtrain = DaskDMatrix(client, X, y)
booster = xgb.dask.train(client, {}, dtrain, num_boost_round=2)['booster']
prediction = xgb.dask.predict(client, model=booster, data=dtrain)
assert prediction.ndim == 1
assert isinstance(prediction, da.Array)
assert prediction.shape[0] == kRows
with pytest.raises(TypeError):
# evals_result is not supported in dask interface.
xgb.dask.train( # type:ignore
client, {}, dtrain, num_boost_round=2, evals_result={})
# force prediction to be computed
from_dmatrix = prediction.compute()
prediction = xgb.dask.predict(client, model=booster, data=X)
from_df = prediction.compute()
assert isinstance(prediction, dd.Series)
assert np.all(prediction.compute().values == from_dmatrix)
assert np.all(from_dmatrix == from_df.to_numpy())
series_predictions = xgb.dask.inplace_predict(client, booster, X)
assert isinstance(series_predictions, dd.Series)
np.testing.assert_allclose(series_predictions.compute().values,
from_dmatrix)
def test_from_dask_array() -> None:
with LocalCluster(n_workers=kWorkers, threads_per_worker=5) as cluster:
with Client(cluster) as client:
X, y, _ = generate_array()
dtrain = DaskDMatrix(client, X, y)
# results is {'booster': Booster, 'history': {...}}
result = xgb.dask.train(client, {}, dtrain)
prediction = xgb.dask.predict(client, result, dtrain)
assert prediction.shape[0] == kRows
assert isinstance(prediction, da.Array)
# force prediction to be computed
prediction = prediction.compute()
booster: xgb.Booster = result['booster']
single_node_predt = booster.predict(
xgb.DMatrix(X.compute())
)
np.testing.assert_allclose(prediction, single_node_predt)
config = json.loads(booster.save_config())
assert int(config['learner']['generic_param']['nthread']) == 5
from_arr = xgb.dask.predict(
client, model=booster, data=X)
assert isinstance(from_arr, da.Array)
assert np.all(single_node_predt == from_arr.compute())
def test_dask_predict_shape_infer(client: "Client") -> None:
X, y = make_classification(n_samples=1000, n_informative=5, n_classes=3)
X_ = dd.from_array(X, chunksize=100)
y_ = dd.from_array(y, chunksize=100)
dtrain = xgb.dask.DaskDMatrix(client, data=X_, label=y_)
model = xgb.dask.train(
client, {"objective": "multi:softprob", "num_class": 3}, dtrain=dtrain
)
preds = xgb.dask.predict(client, model, dtrain)
assert preds.shape[0] == preds.compute().shape[0]
assert preds.shape[1] == preds.compute().shape[1]
prediction = xgb.dask.predict(client, model, X_, output_margin=True)
assert isinstance(prediction, dd.DataFrame)
prediction = prediction.compute()
assert prediction.ndim == 2
assert prediction.shape[0] == kRows
assert prediction.shape[1] == 3
prediction = xgb.dask.inplace_predict(client, model, X_, predict_type="margin")
assert isinstance(prediction, dd.DataFrame)
prediction = prediction.compute()
assert prediction.ndim == 2
assert prediction.shape[0] == kRows
assert prediction.shape[1] == 3
def run_boost_from_prediction(
X: xgb.dask._DaskCollection, y: xgb.dask._DaskCollection, tree_method: str, client: "Client"
) -> None:
model_0 = xgb.dask.DaskXGBClassifier(
learning_rate=0.3, random_state=0, n_estimators=4,
tree_method=tree_method)
model_0.fit(X=X, y=y)
margin = model_0.predict(X, output_margin=True)
model_1 = xgb.dask.DaskXGBClassifier(
learning_rate=0.3, random_state=0, n_estimators=4,
tree_method=tree_method)
model_1.fit(X=X, y=y, base_margin=margin)
predictions_1 = model_1.predict(X, base_margin=margin)
cls_2 = xgb.dask.DaskXGBClassifier(
learning_rate=0.3, random_state=0, n_estimators=8,
tree_method=tree_method)
cls_2.fit(X=X, y=y)
predictions_2 = cls_2.predict(X)
assert np.all(predictions_1.compute() == predictions_2.compute())
margined = xgb.dask.DaskXGBClassifier(n_estimators=4)
margined.fit(
X=X, y=y, base_margin=margin, eval_set=[(X, y)], base_margin_eval_set=[margin]
)
unmargined = xgb.dask.DaskXGBClassifier(n_estimators=4)
unmargined.fit(X=X, y=y, eval_set=[(X, y)], base_margin=margin)
margined_res = margined.evals_result()['validation_0']['logloss']
unmargined_res = unmargined.evals_result()['validation_0']['logloss']
assert len(margined_res) == len(unmargined_res)
for i in range(len(margined_res)):
# margined is correct one, so smaller error.
assert margined_res[i] < unmargined_res[i]
@pytest.mark.parametrize("tree_method", ["hist", "approx"])
def test_boost_from_prediction(tree_method: str, client: "Client") -> None:
from sklearn.datasets import load_breast_cancer
X_, y_ = load_breast_cancer(return_X_y=True)
X, y = dd.from_array(X_, chunksize=100), dd.from_array(y_, chunksize=100)
run_boost_from_prediction(X, y, tree_method, client)
def test_inplace_predict(client: "Client") -> None:
from sklearn.datasets import load_boston
X_, y_ = load_boston(return_X_y=True)
X, y = dd.from_array(X_, chunksize=32), dd.from_array(y_, chunksize=32)
reg = xgb.dask.DaskXGBRegressor(n_estimators=4).fit(X, y)
booster = reg.get_booster()
base_margin = y
inplace = xgb.dask.inplace_predict(
client, booster, X, base_margin=base_margin
).compute()
Xy = xgb.dask.DaskDMatrix(client, X, base_margin=base_margin)
copied = xgb.dask.predict(client, booster, Xy).compute()
np.testing.assert_allclose(inplace, copied)
def test_dask_missing_value_reg(client: "Client") -> None:
X_0 = np.ones((20 // 2, kCols))
X_1 = np.zeros((20 // 2, kCols))
X = np.concatenate([X_0, X_1], axis=0)
np.random.shuffle(X)
X = da.from_array(X)
X = X.rechunk(20, 1)
y = da.random.randint(0, 3, size=20)
y.rechunk(20)
regressor = xgb.dask.DaskXGBRegressor(verbosity=1, n_estimators=2,
missing=0.0)
regressor.client = client
regressor.set_params(tree_method='hist')
regressor.fit(X, y, eval_set=[(X, y)])
dd_predt = regressor.predict(X).compute()
np_X = X.compute()
np_predt = regressor.get_booster().predict(
xgb.DMatrix(np_X, missing=0.0))
np.testing.assert_allclose(np_predt, dd_predt)
def test_dask_missing_value_cls(client: "Client") -> None:
X_0 = np.ones((kRows // 2, kCols))
X_1 = np.zeros((kRows // 2, kCols))
X = np.concatenate([X_0, X_1], axis=0)
np.random.shuffle(X)
X = da.from_array(X)
X = X.rechunk(20, None)
y = da.random.randint(0, 3, size=kRows)
y = y.rechunk(20, 1)
cls = xgb.dask.DaskXGBClassifier(verbosity=1, n_estimators=2,
tree_method='hist',
missing=0.0)
cls.client = client
cls.fit(X, y, eval_set=[(X, y)])
dd_pred_proba = cls.predict_proba(X).compute()
np_X = X.compute()
np_pred_proba = cls.get_booster().predict(
xgb.DMatrix(np_X, missing=0.0))
np.testing.assert_allclose(np_pred_proba, dd_pred_proba)
cls = xgb.dask.DaskXGBClassifier()
assert hasattr(cls, 'missing')
@pytest.mark.parametrize("model", ["boosting", "rf"])
def test_dask_regressor(model: str, client: "Client") -> None:
X, y, w = generate_array(with_weights=True)
if model == "boosting":
regressor = xgb.dask.DaskXGBRegressor(verbosity=1, n_estimators=2)
else:
regressor = xgb.dask.DaskXGBRFRegressor(verbosity=1, n_estimators=2)
assert regressor._estimator_type == "regressor"
assert sklearn.base.is_regressor(regressor)
regressor.set_params(tree_method='hist')
regressor.client = client
regressor.fit(X, y, sample_weight=w, eval_set=[(X, y)])
prediction = regressor.predict(X)
assert prediction.ndim == 1
assert prediction.shape[0] == kRows
history = regressor.evals_result()
assert isinstance(prediction, da.Array)
assert isinstance(history, dict)
assert list(history['validation_0'].keys())[0] == 'rmse'
forest = int(
json.loads(regressor.get_booster().save_config())["learner"][
"gradient_booster"
]["gbtree_train_param"]["num_parallel_tree"]
)
if model == "boosting":
assert len(history['validation_0']['rmse']) == 2
assert forest == 1
else:
assert len(history['validation_0']['rmse']) == 1
assert forest == 2
def run_dask_classifier(
X: xgb.dask._DaskCollection,
y: xgb.dask._DaskCollection,
w: xgb.dask._DaskCollection,
model: str,
client: "Client",
) -> None:
if model == "boosting":
classifier = xgb.dask.DaskXGBClassifier(
verbosity=1, n_estimators=2, eval_metric="merror"
)
else:
classifier = xgb.dask.DaskXGBRFClassifier(
verbosity=1, n_estimators=2, eval_metric="merror"
)
assert classifier._estimator_type == "classifier"
assert sklearn.base.is_classifier(classifier)
classifier.client = client
classifier.fit(X, y, sample_weight=w, eval_set=[(X, y)])
prediction = classifier.predict(X).compute()
assert prediction.ndim == 1
assert prediction.shape[0] == kRows
history = classifier.evals_result()
assert isinstance(history, dict)
assert list(history.keys())[0] == "validation_0"
assert list(history["validation_0"].keys())[0] == "merror"
assert len(list(history["validation_0"])) == 1
forest = int(
json.loads(classifier.get_booster().save_config())["learner"][
"gradient_booster"
]["gbtree_train_param"]["num_parallel_tree"]
)
if model == "boosting":
assert len(history["validation_0"]["merror"]) == 2
assert forest == 1
else:
assert len(history["validation_0"]["merror"]) == 1
assert forest == 2
# Test .predict_proba()
probas = classifier.predict_proba(X).compute()
assert classifier.n_classes_ == 10
assert probas.ndim == 2
assert probas.shape[0] == kRows
assert probas.shape[1] == 10
cls_booster = classifier.get_booster()
single_node_proba = cls_booster.inplace_predict(X.compute())
# test shared by CPU and GPU
if isinstance(single_node_proba, np.ndarray):
np.testing.assert_allclose(single_node_proba, probas)
else:
import cupy
cupy.testing.assert_allclose(single_node_proba, probas)
# Test with dataframe, not shared with GPU as cupy doesn't work well with da.unique.
if isinstance(X, da.Array):
X_d: dd.DataFrame = X.to_dask_dataframe()
assert classifier.n_classes_ == 10
prediction_df = classifier.predict(X_d).compute()
assert prediction_df.ndim == 1
assert prediction_df.shape[0] == kRows
np.testing.assert_allclose(prediction_df, prediction)
probas = classifier.predict_proba(X).compute()
np.testing.assert_allclose(single_node_proba, probas)
@pytest.mark.parametrize("model", ["boosting", "rf"])
def test_dask_classifier(model: str, client: "Client") -> None:
X, y, w = generate_array(with_weights=True)
y = (y * 10).astype(np.int32)
run_dask_classifier(X, y, w, model, client)
@pytest.mark.skipif(**tm.no_sklearn())
def test_sklearn_grid_search(client: "Client") -> None:
from sklearn.model_selection import GridSearchCV
X, y, _ = generate_array()
reg = xgb.dask.DaskXGBRegressor(learning_rate=0.1,
tree_method='hist')
reg.client = client
model = GridSearchCV(reg, {'max_depth': [2, 4],
'n_estimators': [5, 10]},
cv=2, verbose=1)
model.fit(X, y)
# Expect unique results for each parameter value This confirms
# sklearn is able to successfully update the parameter
means = model.cv_results_['mean_test_score']
assert len(means) == len(set(means))
def test_empty_dmatrix_training_continuation(client: "Client") -> None:
kRows, kCols = 1, 97
X = dd.from_array(np.random.randn(kRows, kCols))
y = dd.from_array(np.random.rand(kRows))
X.columns = ['X' + str(i) for i in range(0, 97)]
dtrain = xgb.dask.DaskDMatrix(client, X, y)
kRows += 1000
X = dd.from_array(np.random.randn(kRows, kCols), chunksize=10)
X.columns = ['X' + str(i) for i in range(0, 97)]
y = dd.from_array(np.random.rand(kRows), chunksize=10)
valid = xgb.dask.DaskDMatrix(client, X, y)
out = xgb.dask.train(client, {'tree_method': 'hist'},
dtrain=dtrain, num_boost_round=2,
evals=[(valid, 'validation')])
out = xgb.dask.train(client, {'tree_method': 'hist'},
dtrain=dtrain, xgb_model=out['booster'],
num_boost_round=2,
evals=[(valid, 'validation')])
assert xgb.dask.predict(client, out, dtrain).compute().shape[0] == 1
def run_empty_dmatrix_reg(client: "Client", parameters: dict) -> None:
def _check_outputs(out: xgb.dask.TrainReturnT, predictions: np.ndarray) -> None:
assert isinstance(out['booster'], xgb.dask.Booster)
assert len(out['history']['validation']['rmse']) == 2
assert isinstance(predictions, np.ndarray)
assert predictions.shape[0] == 1
kRows, kCols = 1, 97
X = dd.from_array(np.random.randn(kRows, kCols))
y = dd.from_array(np.random.rand(kRows))
dtrain = xgb.dask.DaskDMatrix(client, X, y)
out = xgb.dask.train(client, parameters,
dtrain=dtrain,
evals=[(dtrain, 'validation')],
num_boost_round=2)
predictions = xgb.dask.predict(client=client, model=out,
data=dtrain).compute()
_check_outputs(out, predictions)
# valid has more rows than train
kRows += 1
X = dd.from_array(np.random.randn(kRows, kCols))
y = dd.from_array(np.random.rand(kRows))
valid = xgb.dask.DaskDMatrix(client, X, y)
out = xgb.dask.train(client, parameters,
dtrain=dtrain,
evals=[(valid, 'validation')],
num_boost_round=2)
predictions = xgb.dask.predict(client=client, model=out,
data=dtrain).compute()
_check_outputs(out, predictions)
# train has more rows than evals
valid = dtrain
kRows += 1
X = dd.from_array(np.random.randn(kRows, kCols))
y = dd.from_array(np.random.rand(kRows))
dtrain = xgb.dask.DaskDMatrix(client, X, y)
out = xgb.dask.train(client, parameters,
dtrain=dtrain,
evals=[(valid, 'validation')],
num_boost_round=2)
predictions = xgb.dask.predict(client=client, model=out,
data=valid).compute()
_check_outputs(out, predictions)
def run_empty_dmatrix_cls(client: "Client", parameters: dict) -> None:
n_classes = 4
def _check_outputs(out: xgb.dask.TrainReturnT, predictions: np.ndarray) -> None:
assert isinstance(out['booster'], xgb.dask.Booster)
assert len(out['history']['validation']['merror']) == 2
assert isinstance(predictions, np.ndarray)
assert predictions.shape[1] == n_classes, predictions.shape
kRows, kCols = 1, 97
X = dd.from_array(np.random.randn(kRows, kCols))
y = dd.from_array(np.random.randint(low=0, high=n_classes, size=kRows))
dtrain = xgb.dask.DaskDMatrix(client, X, y)
parameters['objective'] = 'multi:softprob'
parameters['eval_metric'] = 'merror'
parameters['num_class'] = n_classes
out = xgb.dask.train(client, parameters,
dtrain=dtrain,
evals=[(dtrain, 'validation')],
num_boost_round=2)
predictions = xgb.dask.predict(client=client, model=out,
data=dtrain)
assert predictions.shape[1] == n_classes
predictions = predictions.compute()
_check_outputs(out, predictions)
# train has more rows than evals
valid = dtrain
kRows += 1
X = dd.from_array(np.random.randn(kRows, kCols))
y = dd.from_array(np.random.randint(low=0, high=n_classes, size=kRows))
dtrain = xgb.dask.DaskDMatrix(client, X, y)
out = xgb.dask.train(client, parameters,
dtrain=dtrain,
evals=[(valid, 'validation')],
num_boost_round=2)
predictions = xgb.dask.predict(client=client, model=out,
data=valid).compute()
_check_outputs(out, predictions)
def run_empty_dmatrix_auc(client: "Client", tree_method: str, n_workers: int) -> None:
from sklearn import datasets
n_samples = 100
n_features = 97
rng = np.random.RandomState(1994)
make_classification = partial(
datasets.make_classification,
n_features=n_features,
random_state=rng
)
# binary
X_, y_ = make_classification(n_samples=n_samples, random_state=rng)
X = dd.from_array(X_, chunksize=10)
y = dd.from_array(y_, chunksize=10)
n_samples = n_workers - 1
valid_X_, valid_y_ = make_classification(n_samples=n_samples, random_state=rng)
valid_X = dd.from_array(valid_X_, chunksize=n_samples)
valid_y = dd.from_array(valid_y_, chunksize=n_samples)
cls = xgb.dask.DaskXGBClassifier(
tree_method=tree_method, n_estimators=2, use_label_encoder=False
)
cls.fit(X, y, eval_metric="auc", eval_set=[(valid_X, valid_y)])
# multiclass
X_, y_ = make_classification(
n_samples=n_samples,
n_classes=10,
n_informative=n_features,
n_redundant=0,
n_repeated=0
)
X = dd.from_array(X_, chunksize=10)
y = dd.from_array(y_, chunksize=10)
n_samples = n_workers - 1
valid_X_, valid_y_ = make_classification(
n_samples=n_samples,
n_classes=10,
n_informative=n_features,
n_redundant=0,
n_repeated=0
)
valid_X = dd.from_array(valid_X_, chunksize=n_samples)
valid_y = dd.from_array(valid_y_, chunksize=n_samples)
cls = xgb.dask.DaskXGBClassifier(
tree_method=tree_method, n_estimators=2, use_label_encoder=False
)
cls.fit(X, y, eval_metric="auc", eval_set=[(valid_X, valid_y)])
def test_empty_dmatrix_auc() -> None:
with LocalCluster(n_workers=2) as cluster:
with Client(cluster) as client:
run_empty_dmatrix_auc(client, "hist", 2)
def run_auc(client: "Client", tree_method: str) -> None:
from sklearn import datasets
n_samples = 100
n_features = 97
rng = np.random.RandomState(1994)
X_, y_ = datasets.make_classification(
n_samples=n_samples, n_features=n_features, random_state=rng
)
X = dd.from_array(X_, chunksize=10)
y = dd.from_array(y_, chunksize=10)
valid_X_, valid_y_ = datasets.make_classification(
n_samples=n_samples, n_features=n_features, random_state=rng
)
valid_X = dd.from_array(valid_X_, chunksize=10)
valid_y = dd.from_array(valid_y_, chunksize=10)
cls = xgb.XGBClassifier(
tree_method=tree_method, n_estimators=2, use_label_encoder=False
)
cls.fit(X_, y_, eval_metric="auc", eval_set=[(valid_X_, valid_y_)])
dcls = xgb.dask.DaskXGBClassifier(
tree_method=tree_method, n_estimators=2, use_label_encoder=False
)
dcls.fit(X, y, eval_metric="auc", eval_set=[(valid_X, valid_y)])
approx = dcls.evals_result()["validation_0"]["auc"]
exact = cls.evals_result()["validation_0"]["auc"]
for i in range(2):
# approximated test.
assert np.abs(approx[i] - exact[i]) <= 0.06
def test_auc(client: "Client") -> None:
run_auc(client, "hist")
# No test for Exact, as empty DMatrix handling are mostly for distributed
# environment and Exact doesn't support it.
def test_empty_dmatrix_hist() -> None:
with LocalCluster(n_workers=kWorkers) as cluster:
with Client(cluster) as client:
parameters = {'tree_method': 'hist'}
run_empty_dmatrix_reg(client, parameters)
run_empty_dmatrix_cls(client, parameters)
def test_empty_dmatrix_approx() -> None:
with LocalCluster(n_workers=kWorkers) as cluster:
with Client(cluster) as client:
parameters = {'tree_method': 'approx'}
run_empty_dmatrix_reg(client, parameters)
run_empty_dmatrix_cls(client, parameters)
async def run_from_dask_array_asyncio(scheduler_address: str) -> xgb.dask.TrainReturnT:
async with Client(scheduler_address, asynchronous=True) as client:
X, y, _ = generate_array()
m = await DaskDMatrix(client, X, y)
output = await xgb.dask.train(client, {}, dtrain=m)
with_m = await xgb.dask.predict(client, output, m)
with_X = await xgb.dask.predict(client, output, X)
inplace = await xgb.dask.inplace_predict(client, output, X)
assert isinstance(with_m, da.Array)
assert isinstance(with_X, da.Array)
assert isinstance(inplace, da.Array)
np.testing.assert_allclose(await client.compute(with_m),
await client.compute(with_X))
np.testing.assert_allclose(await client.compute(with_m),
await client.compute(inplace))
return output
async def run_dask_regressor_asyncio(scheduler_address: str) -> None:
async with Client(scheduler_address, asynchronous=True) as client:
X, y, _ = generate_array()
regressor = await xgb.dask.DaskXGBRegressor(verbosity=1,
n_estimators=2)
regressor.set_params(tree_method='hist')
regressor.client = client
await regressor.fit(X, y, eval_set=[(X, y)])
prediction = await regressor.predict(X)
assert prediction.ndim == 1
assert prediction.shape[0] == kRows
history = regressor.evals_result()
assert isinstance(prediction, da.Array)
assert isinstance(history, dict)
assert list(history['validation_0'].keys())[0] == 'rmse'
assert len(history['validation_0']['rmse']) == 2
awaited = await client.compute(prediction)
assert awaited.shape[0] == kRows
async def run_dask_classifier_asyncio(scheduler_address: str) -> None:
async with Client(scheduler_address, asynchronous=True) as client:
X, y, _ = generate_array()
y = (y * 10).astype(np.int32)
classifier = await xgb.dask.DaskXGBClassifier(
verbosity=1, n_estimators=2, eval_metric='merror')
classifier.client = client
await classifier.fit(X, y, eval_set=[(X, y)])
prediction = await classifier.predict(X)
assert prediction.ndim == 1
assert prediction.shape[0] == kRows
history = classifier.evals_result()
assert isinstance(prediction, da.Array)
assert isinstance(history, dict)
assert list(history.keys())[0] == 'validation_0'
assert list(history['validation_0'].keys())[0] == 'merror'
assert len(list(history['validation_0'])) == 1
assert len(history['validation_0']['merror']) == 2
# Test .predict_proba()
probas = await classifier.predict_proba(X)
assert classifier.n_classes_ == 10
assert probas.ndim == 2
assert probas.shape[0] == kRows
assert probas.shape[1] == 10
# Test with dataframe.
X_d = dd.from_dask_array(X)
y_d = dd.from_dask_array(y)
await classifier.fit(X_d, y_d)
assert classifier.n_classes_ == 10
prediction = await client.compute(await classifier.predict(X_d))
assert prediction.ndim == 1
assert prediction.shape[0] == kRows
def test_with_asyncio() -> None:
with LocalCluster() as cluster:
with Client(cluster) as client:
address = client.scheduler.address
output = asyncio.run(run_from_dask_array_asyncio(address))
assert isinstance(output['booster'], xgb.Booster)
assert isinstance(output['history'], dict)
asyncio.run(run_dask_regressor_asyncio(address))
asyncio.run(run_dask_classifier_asyncio(address))
async def generate_concurrent_trainings() -> None:
async def train() -> None:
async with LocalCluster(n_workers=2,
threads_per_worker=1,
asynchronous=True,
dashboard_address=0) as cluster:
async with Client(cluster, asynchronous=True) as client:
X, y, w = generate_array(with_weights=True)
dtrain = await DaskDMatrix(client, X, y, weight=w)
dvalid = await DaskDMatrix(client, X, y, weight=w)
output = await xgb.dask.train(client, {}, dtrain=dtrain)
await xgb.dask.predict(client, output, data=dvalid)
await asyncio.gather(train(), train())
def test_concurrent_trainings() -> None:
asyncio.run(generate_concurrent_trainings())
def test_predict(client: "Client") -> None:
X, y, _ = generate_array()
dtrain = DaskDMatrix(client, X, y)
booster = xgb.dask.train(client, {}, dtrain, num_boost_round=2)["booster"]
predt_0 = xgb.dask.predict(client, model=booster, data=dtrain)
assert predt_0.ndim == 1
assert predt_0.shape[0] == kRows
margin = xgb.dask.predict(client, model=booster, data=dtrain, output_margin=True)
assert margin.ndim == 1
assert margin.shape[0] == kRows
shap = xgb.dask.predict(client, model=booster, data=dtrain, pred_contribs=True)
assert shap.ndim == 2
assert shap.shape[0] == kRows
assert shap.shape[1] == kCols + 1
booster_f = client.scatter(booster, broadcast=True)
predt_1 = xgb.dask.predict(client, booster_f, X).compute()
predt_2 = xgb.dask.inplace_predict(client, booster_f, X).compute()
np.testing.assert_allclose(predt_0, predt_1)
np.testing.assert_allclose(predt_0, predt_2)
def test_predict_with_meta(client: "Client") -> None:
X, y, w = generate_array(with_weights=True)
assert w is not None
partition_size = 20
margin = da.random.random(kRows, partition_size) + 1e4
dtrain = DaskDMatrix(client, X, y, weight=w, base_margin=margin)
booster: xgb.Booster = xgb.dask.train(
client, {}, dtrain, num_boost_round=4)['booster']
prediction = xgb.dask.predict(client, model=booster, data=dtrain)
assert prediction.ndim == 1
assert prediction.shape[0] == kRows
prediction = client.compute(prediction).result()
assert np.all(prediction > 1e3)
m = xgb.DMatrix(X.compute())
m.set_info(label=y.compute(), weight=w.compute(), base_margin=margin.compute())
single = booster.predict(m) # Make sure the ordering is correct.
assert np.all(prediction == single)
def run_aft_survival(client: "Client", dmatrix_t: Type) -> None:
df = dd.read_csv(os.path.join(tm.PROJECT_ROOT, 'demo', 'data',
'veterans_lung_cancer.csv'))
y_lower_bound = df['Survival_label_lower_bound']
y_upper_bound = df['Survival_label_upper_bound']
X = df.drop(['Survival_label_lower_bound',
'Survival_label_upper_bound'], axis=1)
m = dmatrix_t(client, X, label_lower_bound=y_lower_bound,
label_upper_bound=y_upper_bound)
base_params = {'verbosity': 0,
'objective': 'survival:aft',
'eval_metric': 'aft-nloglik',
'learning_rate': 0.05,
'aft_loss_distribution_scale': 1.20,
'max_depth': 6,
'lambda': 0.01,
'alpha': 0.02}
nloglik_rec = {}
dists = ['normal', 'logistic', 'extreme']
for dist in dists:
params = base_params
params.update({'aft_loss_distribution': dist})
evals_result = {}
out = xgb.dask.train(client, params, m, num_boost_round=100,
evals=[(m, 'train')])
evals_result = out['history']
nloglik_rec[dist] = evals_result['train']['aft-nloglik']
# AFT metric (negative log likelihood) improve monotonically
assert all(p >= q for p, q in zip(nloglik_rec[dist],
nloglik_rec[dist][:1]))
# For this data, normal distribution works the best
assert nloglik_rec['normal'][-1] < 4.9
assert nloglik_rec['logistic'][-1] > 4.9
assert nloglik_rec['extreme'][-1] > 4.9
def test_dask_aft_survival() -> None:
with LocalCluster(n_workers=kWorkers) as cluster:
with Client(cluster) as client:
run_aft_survival(client, DaskDMatrix)
def test_dask_ranking(client: "Client") -> None:
dpath = "demo/rank/"
mq2008 = tm.get_mq2008(dpath)
data = []
for d in mq2008:
if isinstance(d, scipy.sparse.csr_matrix):
d[d == 0] = np.inf
d = d.toarray()
d[d == 0] = np.nan
d[np.isinf(d)] = 0
data.append(dd.from_array(d, chunksize=32))
else:
data.append(dd.from_array(d, chunksize=32))
(
x_train,
y_train,
qid_train,
x_test,
y_test,
qid_test,
x_valid,
y_valid,
qid_valid,
) = data
qid_train = qid_train.astype(np.uint32)
qid_valid = qid_valid.astype(np.uint32)
qid_test = qid_test.astype(np.uint32)
rank = xgb.dask.DaskXGBRanker(n_estimators=2500)
rank.fit(
x_train,
y_train,
qid=qid_train,
eval_set=[(x_test, y_test), (x_train, y_train)],
eval_qid=[qid_test, qid_train],
eval_metric=["ndcg"],
verbose=True,
early_stopping_rounds=10,
)
assert rank.n_features_in_ == 46
assert rank.best_score > 0.98
@pytest.mark.parametrize("booster", ["dart", "gbtree"])
def test_dask_predict_leaf(booster: str, client: "Client") -> None:
from sklearn.datasets import load_digits
X_, y_ = load_digits(return_X_y=True)
num_parallel_tree = 4
X, y = dd.from_array(X_, chunksize=32), dd.from_array(y_, chunksize=32)
rounds = 4
cls = xgb.dask.DaskXGBClassifier(
n_estimators=rounds, num_parallel_tree=num_parallel_tree, booster=booster
)
cls.client = client
cls.fit(X, y)
leaf = xgb.dask.predict(
client,
cls.get_booster(),
X.to_dask_array(), # we can't map_blocks on dataframe when output is 4-dim.
pred_leaf=True,
strict_shape=True,
validate_features=False,
).compute()
assert leaf.shape[0] == X_.shape[0]
assert leaf.shape[1] == rounds
assert leaf.shape[2] == cls.n_classes_
assert leaf.shape[3] == num_parallel_tree
leaf_from_apply = cls.apply(X).reshape(leaf.shape).compute()
np.testing.assert_allclose(leaf_from_apply, leaf)
verify_leaf_output(leaf, num_parallel_tree)
class TestWithDask:
@pytest.mark.parametrize('config_key,config_value', [('verbosity', 0), ('use_rmm', True)])
def test_global_config(
self,
client: "Client",
config_key: str,
config_value: Any
) -> None:
X, y, _ = generate_array()
xgb.config.set_config(**{config_key: config_value})
dtrain = DaskDMatrix(client, X, y)
before_fname = './before_training-test_global_config'
after_fname = './after_training-test_global_config'
class TestCallback(xgb.callback.TrainingCallback):
def write_file(self, fname: str) -> None:
with open(fname, 'w') as fd:
fd.write(str(xgb.config.get_config()[config_key]))
def before_training(self, model: xgb.Booster) -> xgb.Booster:
self.write_file(before_fname)
assert xgb.config.get_config()[config_key] == config_value
return model
def after_training(self, model: xgb.Booster) -> xgb.Booster:
assert xgb.config.get_config()[config_key] == config_value
return model
def before_iteration(
self, model: xgb.Booster, epoch: int, evals_log: Dict
) -> bool:
assert xgb.config.get_config()[config_key] == config_value
return False
def after_iteration(
self, model: xgb.Booster, epoch: int, evals_log: Dict
) -> bool:
self.write_file(after_fname)
assert xgb.config.get_config()[config_key] == config_value
return False
xgb.dask.train(client, {}, dtrain, num_boost_round=4, callbacks=[TestCallback()])[
'booster']
with open(before_fname, 'r') as before, open(after_fname, 'r') as after:
assert before.read() == str(config_value)
assert after.read() == str(config_value)
os.remove(before_fname)
os.remove(after_fname)
def run_updater_test(
self,
client: "Client",
params: Dict,
num_rounds: int,
dataset: tm.TestDataset,
tree_method: str
) -> None:
params['tree_method'] = tree_method
params = dataset.set_params(params)
# It doesn't make sense to distribute a completely
# empty dataset.
if dataset.X.shape[0] == 0:
return
chunk = 128
X = da.from_array(dataset.X,
chunks=(chunk, dataset.X.shape[1]))
y = da.from_array(dataset.y, chunks=(chunk,))
if dataset.w is not None:
w = da.from_array(dataset.w, chunks=(chunk,))
else:
w = None
m = xgb.dask.DaskDMatrix(
client, data=X, label=y, weight=w)
history = xgb.dask.train(client, params=params, dtrain=m,
num_boost_round=num_rounds,
evals=[(m, 'train')])['history']
note(history)
history = history['train'][dataset.metric]
assert tm.non_increasing(history)
# Make sure that it's decreasing
assert history[-1] < history[0]
@given(params=hist_parameter_strategy,
dataset=tm.dataset_strategy)
@settings(deadline=None, suppress_health_check=suppress)
def test_hist(
self, params: Dict, dataset: tm.TestDataset, client: "Client"
) -> None:
num_rounds = 30
self.run_updater_test(client, params, num_rounds, dataset, 'hist')
@given(params=exact_parameter_strategy,
dataset=tm.dataset_strategy)
@settings(deadline=None, suppress_health_check=suppress)
def test_approx(
self, client: "Client", params: Dict, dataset: tm.TestDataset
) -> None:
num_rounds = 30
self.run_updater_test(client, params, num_rounds, dataset, 'approx')
def run_quantile(self, name: str) -> None:
if sys.platform.startswith("win"):
pytest.skip("Skipping dask tests on Windows")
exe: Optional[str] = None
for possible_path in {'./testxgboost', './build/testxgboost',
'../build/testxgboost',
'../cpu-build/testxgboost'}:
if os.path.exists(possible_path):
exe = possible_path
if exe is None:
return
test = "--gtest_filter=Quantile." + name
def runit(
worker_addr: str, rabit_args: List[bytes]
) -> subprocess.CompletedProcess:
port_env = ''
# setup environment for running the c++ part.
for arg in rabit_args:
if arg.decode('utf-8').startswith('DMLC_TRACKER_PORT'):
port_env = arg.decode('utf-8')
port = port_env.split('=')
env = os.environ.copy()
env[port[0]] = port[1]
return subprocess.run([str(exe), test], env=env, capture_output=True)
with LocalCluster(n_workers=4) as cluster:
with Client(cluster) as client:
workers = _get_client_workers(client)
rabit_args = client.sync(
xgb.dask._get_rabit_args, len(workers), client)
futures = client.map(runit,
workers,
pure=False,
workers=workers,
rabit_args=rabit_args)
results = client.gather(futures)
for ret in results:
msg = ret.stdout.decode('utf-8')
assert msg.find('1 test from Quantile') != -1, msg
assert ret.returncode == 0, msg
@pytest.mark.skipif(**tm.no_dask())
@pytest.mark.gtest
def test_quantile_basic(self) -> None:
self.run_quantile('DistributedBasic')
@pytest.mark.skipif(**tm.no_dask())
@pytest.mark.gtest
def test_quantile(self) -> None:
self.run_quantile('Distributed')
@pytest.mark.skipif(**tm.no_dask())
@pytest.mark.gtest
def test_quantile_same_on_all_workers(self) -> None:
self.run_quantile('SameOnAllWorkers')
def test_n_workers(self) -> None:
with LocalCluster(n_workers=2) as cluster:
with Client(cluster) as client:
workers = _get_client_workers(client)
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
dX = client.submit(da.from_array, X, workers=[workers[0]]).result()
dy = client.submit(da.from_array, y, workers=[workers[0]]).result()
train = xgb.dask.DaskDMatrix(client, dX, dy)
dX = dd.from_array(X)
dX = client.persist(dX, workers=workers[1])
dy = dd.from_array(y)
dy = client.persist(dy, workers=workers[1])
valid = xgb.dask.DaskDMatrix(client, dX, dy)
merged = xgb.dask._get_workers_from_data(train, evals=[(valid, 'Valid')])
assert len(merged) == 2
@pytest.mark.skipif(**tm.no_dask())
def test_feature_weights(self, client: "Client") -> None:
kRows = 1024
kCols = 64
rng = da.random.RandomState(1994)
X = rng.random_sample((kRows, kCols), chunks=(32, -1))
y = rng.random_sample(kRows, chunks=32)
fw = np.ones(shape=(kCols,))
for i in range(kCols):
fw[i] *= float(i)
fw = da.from_array(fw)
poly_increasing = run_feature_weights(X, y, fw, model=xgb.dask.DaskXGBRegressor)
fw = np.ones(shape=(kCols,))
for i in range(kCols):
fw[i] *= float(kCols - i)
fw = da.from_array(fw)
poly_decreasing = run_feature_weights(X, y, fw, model=xgb.dask.DaskXGBRegressor)
# Approxmated test, this is dependent on the implementation of random
# number generator in std library.
assert poly_increasing[0] > 0.08
assert poly_decreasing[0] < -0.08
@pytest.mark.skipif(**tm.no_dask())
@pytest.mark.skipif(**tm.no_sklearn())
def test_custom_objective(self, client: "Client") -> None:
from sklearn.datasets import load_boston
X, y = load_boston(return_X_y=True)
X, y = da.from_array(X), da.from_array(y)
rounds = 20
with tempfile.TemporaryDirectory() as tmpdir:
path = os.path.join(tmpdir, 'log')
def sqr(
labels: np.ndarray, predts: np.ndarray
) -> Tuple[np.ndarray, np.ndarray]:
with open(path, 'a') as fd:
print('Running sqr', file=fd)
grad = predts - labels
hess = np.ones(shape=labels.shape[0])
return grad, hess
reg = xgb.dask.DaskXGBRegressor(n_estimators=rounds, objective=sqr,
tree_method='hist')
reg.fit(X, y, eval_set=[(X, y)])
# Check the obj is ran for rounds.
with open(path, 'r') as fd:
out = fd.readlines()
assert len(out) == rounds
results_custom = reg.evals_result()
reg = xgb.dask.DaskXGBRegressor(n_estimators=rounds, tree_method='hist')
reg.fit(X, y, eval_set=[(X, y)])
results_native = reg.evals_result()
np.testing.assert_allclose(results_custom['validation_0']['rmse'],
results_native['validation_0']['rmse'])
tm.non_increasing(results_native['validation_0']['rmse'])
def test_no_duplicated_partition(self) -> None:
'''Assert each worker has the correct amount of data, and DMatrix initialization doesn't
generate unnecessary copies of data.
'''
with LocalCluster(n_workers=2) as cluster:
with Client(cluster) as client:
X, y, _ = generate_array()
n_partitions = X.npartitions
m = xgb.dask.DaskDMatrix(client, X, y)
workers = _get_client_workers(client)
rabit_args = client.sync(xgb.dask._get_rabit_args, len(workers), client)
n_workers = len(workers)
def worker_fn(worker_addr: str, data_ref: Dict) -> None:
with xgb.dask.RabitContext(rabit_args):
local_dtrain = xgb.dask._dmatrix_from_list_of_parts(**data_ref)
total = np.array([local_dtrain.num_row()])
total = xgb.rabit.allreduce(total, xgb.rabit.Op.SUM)
assert total[0] == kRows
futures = []
for i in range(len(workers)):
futures.append(
client.submit(
worker_fn, workers[i],
m._create_fn_args(workers[i]), pure=False,
workers=[workers[i]])
)
client.gather(futures)
has_what = client.has_what()
cnt = 0
data = set()
for k, v in has_what.items():
for d in v:
cnt += 1
data.add(d)
assert len(data) == cnt
# Subtract the on disk resource from each worker
assert cnt - n_workers == n_partitions
def test_data_initialization(self, client: "Client") -> None:
"""assert that we don't create duplicated DMatrix"""
from sklearn.datasets import load_digits
X, y = load_digits(return_X_y=True)
X, y = dd.from_array(X, chunksize=32), dd.from_array(y, chunksize=32)
run_data_initialization(xgb.dask.DaskDMatrix, xgb.dask.DaskXGBClassifier, X, y)
def run_shap(self, X: Any, y: Any, params: Dict[str, Any], client: "Client") -> None:
rows = X.shape[0]
cols = X.shape[1]
def assert_shape(shape: Tuple[int, ...]) -> None:
assert shape[0] == rows
if "num_class" in params.keys():
assert shape[1] == params["num_class"]
assert shape[2] == cols + 1
else:
assert shape[1] == cols + 1
X, y = da.from_array(X, chunks=(32, -1)), da.from_array(y, chunks=32)
Xy = xgb.dask.DaskDMatrix(client, X, y)
booster = xgb.dask.train(client, params, Xy, num_boost_round=10)['booster']
test_Xy = xgb.dask.DaskDMatrix(client, X, y)
shap = xgb.dask.predict(client, booster, test_Xy, pred_contribs=True).compute()
margin = xgb.dask.predict(client, booster, test_Xy, output_margin=True).compute()
assert_shape(shap.shape)
assert np.allclose(np.sum(shap, axis=len(shap.shape) - 1), margin, 1e-5, 1e-5)
shap = xgb.dask.predict(client, booster, X, pred_contribs=True).compute()
margin = xgb.dask.predict(client, booster, X, output_margin=True).compute()
assert_shape(shap.shape)
assert np.allclose(np.sum(shap, axis=len(shap.shape) - 1), margin, 1e-5, 1e-5)
if "num_class" not in params.keys():
X = dd.from_dask_array(X).repartition(npartitions=32)
y = dd.from_dask_array(y).repartition(npartitions=32)
shap_df = xgb.dask.predict(
client, booster, X, pred_contribs=True, validate_features=False
).compute()
assert_shape(shap_df.shape)
assert np.allclose(
np.sum(shap_df, axis=len(shap_df.shape) - 1), margin, 1e-5, 1e-5
)
def run_shap_cls_sklearn(self, X: Any, y: Any, client: "Client") -> None:
X, y = da.from_array(X, chunks=(32, -1)), da.from_array(y, chunks=32)
cls = xgb.dask.DaskXGBClassifier(n_estimators=4)
cls.client = client
cls.fit(X, y)
booster = cls.get_booster()
test_Xy = xgb.dask.DaskDMatrix(client, X, y)
shap = xgb.dask.predict(client, booster, test_Xy, pred_contribs=True).compute()
margin = xgb.dask.predict(client, booster, test_Xy, output_margin=True).compute()
assert np.allclose(np.sum(shap, axis=len(shap.shape) - 1), margin, 1e-5, 1e-5)
shap = xgb.dask.predict(client, booster, X, pred_contribs=True).compute()
margin = xgb.dask.predict(client, booster, X, output_margin=True).compute()
assert np.allclose(np.sum(shap, axis=len(shap.shape) - 1), margin, 1e-5, 1e-5)
def test_shap(self, client: "Client") -> None:
from sklearn.datasets import load_boston, load_digits
X, y = load_boston(return_X_y=True)
params: Dict[str, Any] = {'objective': 'reg:squarederror'}
self.run_shap(X, y, params, client)
X, y = load_digits(return_X_y=True)
params = {'objective': 'multi:softmax', 'num_class': 10}
self.run_shap(X, y, params, client)
params = {'objective': 'multi:softprob', 'num_class': 10}
self.run_shap(X, y, params, client)
self.run_shap_cls_sklearn(X, y, client)
def run_shap_interactions(
self,
X: Any,
y: Any,
params: Dict[str, Any],
client: "Client"
) -> None:
rows = X.shape[0]
cols = X.shape[1]
X, y = da.from_array(X, chunks=(32, -1)), da.from_array(y, chunks=32)
Xy = xgb.dask.DaskDMatrix(client, X, y)
booster = xgb.dask.train(client, params, Xy, num_boost_round=10)['booster']
test_Xy = xgb.dask.DaskDMatrix(client, X, y)
shap = xgb.dask.predict(
client, booster, test_Xy, pred_interactions=True
).compute()
assert len(shap.shape) == 3
assert shap.shape[0] == rows
assert shap.shape[1] == cols + 1
assert shap.shape[2] == cols + 1
margin = xgb.dask.predict(client, booster, test_Xy, output_margin=True).compute()
assert np.allclose(np.sum(shap, axis=(len(shap.shape) - 1, len(shap.shape) - 2)),
margin,
1e-5, 1e-5)
def test_shap_interactions(self, client: "Client") -> None:
from sklearn.datasets import load_boston
X, y = load_boston(return_X_y=True)
params = {'objective': 'reg:squarederror'}
self.run_shap_interactions(X, y, params, client)
@pytest.mark.skipif(**tm.no_sklearn())
def test_sklearn_io(self, client: 'Client') -> None:
from sklearn.datasets import load_digits
X_, y_ = load_digits(return_X_y=True)
X, y = da.from_array(X_), da.from_array(y_)
cls = xgb.dask.DaskXGBClassifier(n_estimators=10)
cls.client = client
cls.fit(X, y)
predt_0 = cls.predict(X)
with tempfile.TemporaryDirectory() as tmpdir:
path = os.path.join(tmpdir, "model.pkl")
with open(path, "wb") as fd:
pickle.dump(cls, fd)
with open(path, "rb") as fd:
cls = pickle.load(fd)
predt_1 = cls.predict(X)
np.testing.assert_allclose(predt_0.compute(), predt_1.compute())
path = os.path.join(tmpdir, 'cls.json')
cls.save_model(path)
cls = xgb.dask.DaskXGBClassifier()
cls.load_model(path)
assert cls.n_classes_ == 10
predt_2 = cls.predict(X)
np.testing.assert_allclose(predt_0.compute(), predt_2.compute())
# Use single node to load
cls = xgb.XGBClassifier()
cls.load_model(path)
assert cls.n_classes_ == 10
predt_3 = cls.predict(X_)
np.testing.assert_allclose(predt_0.compute(), predt_3)
def test_dask_unsupported_features(client: "Client") -> None:
X, y, _ = generate_array()
# gblinear doesn't support distributed training.
with pytest.raises(NotImplementedError, match="gblinear"):
xgb.dask.train(
client, {"booster": "gblinear"}, xgb.dask.DaskDMatrix(client, X, y)
)
def test_parallel_submits(client: "Client") -> None:
"""Test for running multiple train simultaneously from single clients."""
try:
from distributed import MultiLock # NOQA
except ImportError:
pytest.skip("`distributed.MultiLock' is not available")
from sklearn.datasets import load_digits
futures = []
workers = _get_client_workers(client)
n_submits = len(workers)
for i in range(n_submits):
X_, y_ = load_digits(return_X_y=True)
X = dd.from_array(X_, chunksize=32)
y = dd.from_array(y_, chunksize=32)
cls = xgb.dask.DaskXGBClassifier(
verbosity=1,
n_estimators=i + 1,
eval_metric="merror",
use_label_encoder=False,
)
f = client.submit(cls.fit, X, y, pure=False)
futures.append(f)
classifiers = client.gather(futures)
assert len(classifiers) == n_submits
for i, cls in enumerate(classifiers):
assert cls.get_booster().num_boosted_rounds() == i + 1
def test_parallel_submit_multi_clients() -> None:
"""Test for running multiple train simultaneously from multiple clients."""
try:
from distributed import MultiLock # NOQA
except ImportError:
pytest.skip("`distributed.MultiLock' is not available")
from sklearn.datasets import load_digits
with LocalCluster(n_workers=4) as cluster:
with Client(cluster) as client:
workers = _get_client_workers(client)
n_submits = len(workers)
assert n_submits == 4
futures = []
for i in range(n_submits):
client = Client(cluster)
X_, y_ = load_digits(return_X_y=True)
X_ += 1.0
X = dd.from_array(X_, chunksize=32)
y = dd.from_array(y_, chunksize=32)
cls = xgb.dask.DaskXGBClassifier(
verbosity=1,
n_estimators=i + 1,
eval_metric="merror",
use_label_encoder=False,
)
f = client.submit(cls.fit, X, y, pure=False)
futures.append((client, f))
t_futures = []
with ThreadPoolExecutor(max_workers=16) as e:
for i in range(n_submits):
def _() -> xgb.dask.DaskXGBClassifier:
return futures[i][0].compute(futures[i][1]).result()
f = e.submit(_)
t_futures.append(f)
for i, f in enumerate(t_futures):
assert f.result().get_booster().num_boosted_rounds() == i + 1
class TestDaskCallbacks:
@pytest.mark.skipif(**tm.no_sklearn())
def test_early_stopping(self, client: "Client") -> None:
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
X, y = da.from_array(X), da.from_array(y)
m = xgb.dask.DaskDMatrix(client, X, y)
valid = xgb.dask.DaskDMatrix(client, X, y)
early_stopping_rounds = 5
booster = xgb.dask.train(client, {'objective': 'binary:logistic',
'eval_metric': 'error',
'tree_method': 'hist'}, m,
evals=[(valid, 'Valid')],
num_boost_round=1000,
early_stopping_rounds=early_stopping_rounds)['booster']
assert hasattr(booster, 'best_score')
dump = booster.get_dump(dump_format='json')
assert len(dump) - booster.best_iteration == early_stopping_rounds + 1
valid_X, valid_y = load_breast_cancer(return_X_y=True)
valid_X, valid_y = da.from_array(valid_X), da.from_array(valid_y)
cls = xgb.dask.DaskXGBClassifier(objective='binary:logistic', tree_method='hist',
n_estimators=1000)
cls.client = client
cls.fit(X, y, early_stopping_rounds=early_stopping_rounds,
eval_set=[(valid_X, valid_y)])
booster = cls.get_booster()
dump = booster.get_dump(dump_format='json')
assert len(dump) - booster.best_iteration == early_stopping_rounds + 1
# Specify the metric
cls = xgb.dask.DaskXGBClassifier(objective='binary:logistic', tree_method='hist',
n_estimators=1000)
cls.client = client
cls.fit(X, y, early_stopping_rounds=early_stopping_rounds,
eval_set=[(valid_X, valid_y)], eval_metric='error')
assert tm.non_increasing(cls.evals_result()['validation_0']['error'])
booster = cls.get_booster()
dump = booster.get_dump(dump_format='json')
assert len(cls.evals_result()['validation_0']['error']) < 20
assert len(dump) - booster.best_iteration == early_stopping_rounds + 1
@pytest.mark.skipif(**tm.no_sklearn())
def test_early_stopping_custom_eval(self, client: "Client") -> None:
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
X, y = da.from_array(X), da.from_array(y)
m = xgb.dask.DaskDMatrix(client, X, y)
valid = xgb.dask.DaskDMatrix(client, X, y)
early_stopping_rounds = 5
booster = xgb.dask.train(
client, {'objective': 'binary:logistic',
'eval_metric': 'error',
'tree_method': 'hist'}, m,
evals=[(m, 'Train'), (valid, 'Valid')],
feval=tm.eval_error_metric,
num_boost_round=1000,
early_stopping_rounds=early_stopping_rounds)['booster']
assert hasattr(booster, 'best_score')
dump = booster.get_dump(dump_format='json')
assert len(dump) - booster.best_iteration == early_stopping_rounds + 1
valid_X, valid_y = load_breast_cancer(return_X_y=True)
valid_X, valid_y = da.from_array(valid_X), da.from_array(valid_y)
cls = xgb.dask.DaskXGBClassifier(objective='binary:logistic', tree_method='hist',
n_estimators=1000)
cls.client = client
cls.fit(X, y, early_stopping_rounds=early_stopping_rounds,
eval_set=[(valid_X, valid_y)], eval_metric=tm.eval_error_metric)
booster = cls.get_booster()
dump = booster.get_dump(dump_format='json')
assert len(dump) - booster.best_iteration == early_stopping_rounds + 1
@pytest.mark.skipif(**tm.no_sklearn())
def test_callback(self, client: "Client") -> None:
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
X, y = da.from_array(X), da.from_array(y)
cls = xgb.dask.DaskXGBClassifier(objective='binary:logistic', tree_method='hist',
n_estimators=10)
cls.client = client
with tempfile.TemporaryDirectory() as tmpdir:
cls.fit(X, y, callbacks=[xgb.callback.TrainingCheckPoint(
directory=Path(tmpdir),
iterations=1,
name='model'
)])
for i in range(1, 10):
assert os.path.exists(
os.path.join(tmpdir, 'model_' + str(i) + '.json'))