89 lines
3.0 KiB
C
89 lines
3.0 KiB
C
/*!
|
|
* Copyright 2019 XGBoost contributors
|
|
*
|
|
* \file c-api-demo.c
|
|
* \brief A simple example of using xgboost C API.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <xgboost/c_api.h>
|
|
|
|
#define safe_xgboost(call) { \
|
|
int err = (call); \
|
|
if (err != 0) { \
|
|
fprintf(stderr, "%s:%d: error in %s: %s\n", __FILE__, __LINE__, #call, XGBGetLastError()); \
|
|
exit(1); \
|
|
} \
|
|
}
|
|
|
|
int main(int argc, char** argv) {
|
|
int silent = 0;
|
|
int use_gpu = 0; // set to 1 to use the GPU for training
|
|
|
|
// load the data
|
|
DMatrixHandle dtrain, dtest;
|
|
safe_xgboost(XGDMatrixCreateFromFile("../data/agaricus.txt.train", silent, &dtrain));
|
|
safe_xgboost(XGDMatrixCreateFromFile("../data/agaricus.txt.test", silent, &dtest));
|
|
|
|
// create the booster
|
|
BoosterHandle booster;
|
|
DMatrixHandle eval_dmats[2] = {dtrain, dtest};
|
|
safe_xgboost(XGBoosterCreate(eval_dmats, 2, &booster));
|
|
|
|
// configure the training
|
|
// available parameters are described here:
|
|
// https://xgboost.readthedocs.io/en/latest/parameter.html
|
|
safe_xgboost(XGBoosterSetParam(booster, "tree_method", use_gpu ? "gpu_hist" : "hist"));
|
|
if (use_gpu) {
|
|
// set the GPU to use;
|
|
// this is not necessary, but provided here as an illustration
|
|
safe_xgboost(XGBoosterSetParam(booster, "gpu_id", "0"));
|
|
} else {
|
|
// avoid evaluating objective and metric on a GPU
|
|
safe_xgboost(XGBoosterSetParam(booster, "gpu_id", "-1"));
|
|
}
|
|
|
|
safe_xgboost(XGBoosterSetParam(booster, "objective", "binary:logistic"));
|
|
safe_xgboost(XGBoosterSetParam(booster, "min_child_weight", "1"));
|
|
safe_xgboost(XGBoosterSetParam(booster, "gamma", "0.1"));
|
|
safe_xgboost(XGBoosterSetParam(booster, "max_depth", "3"));
|
|
safe_xgboost(XGBoosterSetParam(booster, "verbosity", silent ? "0" : "1"));
|
|
|
|
// train and evaluate for 10 iterations
|
|
int n_trees = 10;
|
|
const char* eval_names[2] = {"train", "test"};
|
|
const char* eval_result = NULL;
|
|
for (int i = 0; i < n_trees; ++i) {
|
|
safe_xgboost(XGBoosterUpdateOneIter(booster, i, dtrain));
|
|
safe_xgboost(XGBoosterEvalOneIter(booster, i, eval_dmats, eval_names, 2, &eval_result));
|
|
printf("%s\n", eval_result);
|
|
}
|
|
|
|
// predict
|
|
bst_ulong out_len = 0;
|
|
const float* out_result = NULL;
|
|
int n_print = 10;
|
|
|
|
safe_xgboost(XGBoosterPredict(booster, dtest, 0, 0, &out_len, &out_result));
|
|
printf("y_pred: ");
|
|
for (int i = 0; i < n_print; ++i) {
|
|
printf("%1.4f ", out_result[i]);
|
|
}
|
|
printf("\n");
|
|
|
|
// print true labels
|
|
safe_xgboost(XGDMatrixGetFloatInfo(dtest, "label", &out_len, &out_result));
|
|
printf("y_test: ");
|
|
for (int i = 0; i < n_print; ++i) {
|
|
printf("%1.4f ", out_result[i]);
|
|
}
|
|
printf("\n");
|
|
|
|
// free everything
|
|
safe_xgboost(XGBoosterFree(booster));
|
|
safe_xgboost(XGDMatrixFree(dtrain));
|
|
safe_xgboost(XGDMatrixFree(dtest));
|
|
return 0;
|
|
}
|