606 lines
18 KiB
Python
606 lines
18 KiB
Python
# pylint: disable=invalid-name
|
|
"""Utilities for data generation."""
|
|
import os
|
|
import zipfile
|
|
from dataclasses import dataclass
|
|
from typing import Any, Generator, List, NamedTuple, Optional, Tuple, Union
|
|
from urllib import request
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from numpy import typing as npt
|
|
from numpy.random import Generator as RNG
|
|
from scipy import sparse
|
|
|
|
import xgboost
|
|
from xgboost.data import pandas_pyarrow_mapper
|
|
|
|
joblib = pytest.importorskip("joblib")
|
|
memory = joblib.Memory("./cachedir", verbose=0)
|
|
|
|
|
|
def np_dtypes(
|
|
n_samples: int, n_features: int
|
|
) -> Generator[Tuple[np.ndarray, np.ndarray], None, None]:
|
|
"""Enumerate all supported dtypes from numpy."""
|
|
import pandas as pd
|
|
|
|
rng = np.random.RandomState(1994)
|
|
# Integer and float.
|
|
orig = rng.randint(low=0, high=127, size=n_samples * n_features).reshape(
|
|
n_samples, n_features
|
|
)
|
|
dtypes = [
|
|
np.int32,
|
|
np.int64,
|
|
np.byte,
|
|
np.short,
|
|
np.intc,
|
|
np.int_,
|
|
np.longlong,
|
|
np.uint32,
|
|
np.uint64,
|
|
np.ubyte,
|
|
np.ushort,
|
|
np.uintc,
|
|
np.uint,
|
|
np.ulonglong,
|
|
np.float16,
|
|
np.float32,
|
|
np.float64,
|
|
np.half,
|
|
np.single,
|
|
np.double,
|
|
]
|
|
for dtype in dtypes:
|
|
X = np.array(orig, dtype=dtype)
|
|
yield orig, X
|
|
yield orig.tolist(), X.tolist()
|
|
|
|
for dtype in dtypes:
|
|
X = np.array(orig, dtype=dtype)
|
|
df_orig = pd.DataFrame(orig)
|
|
df = pd.DataFrame(X)
|
|
yield df_orig, df
|
|
|
|
# Boolean
|
|
orig = rng.binomial(1, 0.5, size=n_samples * n_features).reshape(
|
|
n_samples, n_features
|
|
)
|
|
for dtype in [np.bool_, bool]:
|
|
X = np.array(orig, dtype=dtype)
|
|
yield orig, X
|
|
|
|
for dtype in [np.bool_, bool]:
|
|
X = np.array(orig, dtype=dtype)
|
|
df_orig = pd.DataFrame(orig)
|
|
df = pd.DataFrame(X)
|
|
yield df_orig, df
|
|
|
|
|
|
def pd_dtypes() -> Generator:
|
|
"""Enumerate all supported pandas extension types."""
|
|
import pandas as pd
|
|
|
|
# Integer
|
|
dtypes = [
|
|
pd.UInt8Dtype(),
|
|
pd.UInt16Dtype(),
|
|
pd.UInt32Dtype(),
|
|
pd.UInt64Dtype(),
|
|
pd.Int8Dtype(),
|
|
pd.Int16Dtype(),
|
|
pd.Int32Dtype(),
|
|
pd.Int64Dtype(),
|
|
]
|
|
|
|
Null: Union[float, None, Any] = np.nan
|
|
orig = pd.DataFrame(
|
|
{"f0": [1, 2, Null, 3], "f1": [4, 3, Null, 1]}, dtype=np.float32
|
|
)
|
|
for Null in (np.nan, None, pd.NA):
|
|
for dtype in dtypes:
|
|
df = pd.DataFrame(
|
|
{"f0": [1, 2, Null, 3], "f1": [4, 3, Null, 1]}, dtype=dtype
|
|
)
|
|
yield orig, df
|
|
|
|
# Float
|
|
Null = np.nan
|
|
dtypes = [pd.Float32Dtype(), pd.Float64Dtype()]
|
|
orig = pd.DataFrame(
|
|
{"f0": [1.0, 2.0, Null, 3.0], "f1": [3.0, 2.0, Null, 1.0]}, dtype=np.float32
|
|
)
|
|
for Null in (np.nan, None, pd.NA):
|
|
for dtype in dtypes:
|
|
df = pd.DataFrame(
|
|
{"f0": [1.0, 2.0, Null, 3.0], "f1": [3.0, 2.0, Null, 1.0]}, dtype=dtype
|
|
)
|
|
yield orig, df
|
|
ser_orig = orig["f0"]
|
|
ser = df["f0"]
|
|
assert isinstance(ser, pd.Series)
|
|
assert isinstance(ser_orig, pd.Series)
|
|
yield ser_orig, ser
|
|
|
|
# Categorical
|
|
orig = orig.astype("category")
|
|
for Null in (np.nan, None, pd.NA):
|
|
df = pd.DataFrame(
|
|
{"f0": [1.0, 2.0, Null, 3.0], "f1": [3.0, 2.0, Null, 1.0]},
|
|
dtype=pd.CategoricalDtype(),
|
|
)
|
|
yield orig, df
|
|
|
|
# Boolean
|
|
for Null in [None, pd.NA]:
|
|
data = {"f0": [True, False, Null, True], "f1": [False, True, Null, True]}
|
|
# pd.NA is not convertible to bool.
|
|
orig = pd.DataFrame(data, dtype=np.bool_ if Null is None else pd.BooleanDtype())
|
|
df = pd.DataFrame(data, dtype=pd.BooleanDtype())
|
|
yield orig, df
|
|
|
|
|
|
def pd_arrow_dtypes() -> Generator:
|
|
"""Pandas DataFrame with pyarrow backed type."""
|
|
import pandas as pd
|
|
import pyarrow as pa # pylint: disable=import-error
|
|
|
|
# Integer
|
|
dtypes = pandas_pyarrow_mapper
|
|
Null: Union[float, None, Any] = np.nan
|
|
orig = pd.DataFrame(
|
|
{"f0": [1, 2, Null, 3], "f1": [4, 3, Null, 1]}, dtype=np.float32
|
|
)
|
|
# Create a dictionary-backed dataframe, enable this when the roundtrip is
|
|
# implemented in pandas/pyarrow
|
|
#
|
|
# category = pd.ArrowDtype(pa.dictionary(pa.int32(), pa.int32(), ordered=True))
|
|
# df = pd.DataFrame({"f0": [0, 2, Null, 3], "f1": [4, 3, Null, 1]}, dtype=category)
|
|
|
|
# Error:
|
|
# >>> df.astype("category")
|
|
# Function 'dictionary_encode' has no kernel matching input types
|
|
# (array[dictionary<values=int32, indices=int32, ordered=0>])
|
|
|
|
# Error:
|
|
# pd_cat_df = pd.DataFrame(
|
|
# {"f0": [0, 2, Null, 3], "f1": [4, 3, Null, 1]},
|
|
# dtype="category"
|
|
# )
|
|
# pa_catcodes = (
|
|
# df["f1"].array.__arrow_array__().combine_chunks().to_pandas().cat.codes
|
|
# )
|
|
# pd_catcodes = pd_cat_df["f1"].cat.codes
|
|
# assert pd_catcodes.equals(pa_catcodes)
|
|
|
|
for Null in (None, pd.NA):
|
|
for dtype in dtypes:
|
|
if dtype.startswith("float16") or dtype.startswith("bool"):
|
|
continue
|
|
df = pd.DataFrame(
|
|
{"f0": [1, 2, Null, 3], "f1": [4, 3, Null, 1]}, dtype=dtype
|
|
)
|
|
yield orig, df
|
|
|
|
orig = pd.DataFrame(
|
|
{"f0": [True, False, pd.NA, True], "f1": [False, True, pd.NA, True]},
|
|
dtype=pd.BooleanDtype(),
|
|
)
|
|
df = pd.DataFrame(
|
|
{"f0": [True, False, pd.NA, True], "f1": [False, True, pd.NA, True]},
|
|
dtype=pd.ArrowDtype(pa.bool_()),
|
|
)
|
|
yield orig, df
|
|
|
|
|
|
def check_inf(rng: RNG) -> None:
|
|
"""Validate there's no inf in X."""
|
|
X = rng.random(size=32).reshape(8, 4)
|
|
y = rng.random(size=8)
|
|
X[5, 2] = np.inf
|
|
|
|
with pytest.raises(ValueError, match="Input data contains `inf`"):
|
|
xgboost.QuantileDMatrix(X, y)
|
|
|
|
with pytest.raises(ValueError, match="Input data contains `inf`"):
|
|
xgboost.DMatrix(X, y)
|
|
|
|
|
|
@memory.cache
|
|
def get_california_housing() -> Tuple[np.ndarray, np.ndarray]:
|
|
"""Fetch the California housing dataset from sklearn."""
|
|
datasets = pytest.importorskip("sklearn.datasets")
|
|
data = datasets.fetch_california_housing()
|
|
return data.data, data.target
|
|
|
|
|
|
@memory.cache
|
|
def get_digits() -> Tuple[np.ndarray, np.ndarray]:
|
|
"""Fetch the digits dataset from sklearn."""
|
|
datasets = pytest.importorskip("sklearn.datasets")
|
|
data = datasets.load_digits()
|
|
return data.data, data.target
|
|
|
|
|
|
@memory.cache
|
|
def get_cancer() -> Tuple[np.ndarray, np.ndarray]:
|
|
"""Fetch the breast cancer dataset from sklearn."""
|
|
datasets = pytest.importorskip("sklearn.datasets")
|
|
return datasets.load_breast_cancer(return_X_y=True)
|
|
|
|
|
|
@memory.cache
|
|
def get_sparse() -> Tuple[np.ndarray, np.ndarray]:
|
|
"""Generate a sparse dataset."""
|
|
datasets = pytest.importorskip("sklearn.datasets")
|
|
rng = np.random.RandomState(199)
|
|
n = 2000
|
|
sparsity = 0.75
|
|
X, y = datasets.make_regression(n, random_state=rng)
|
|
flag = rng.binomial(1, sparsity, X.shape)
|
|
for i in range(X.shape[0]):
|
|
for j in range(X.shape[1]):
|
|
if flag[i, j]:
|
|
X[i, j] = np.nan
|
|
return X, y
|
|
|
|
|
|
@memory.cache
|
|
def get_ames_housing() -> Tuple[np.ndarray, np.ndarray]:
|
|
"""
|
|
Number of samples: 1460
|
|
Number of features: 20
|
|
Number of categorical features: 10
|
|
Number of numerical features: 10
|
|
"""
|
|
datasets = pytest.importorskip("sklearn.datasets")
|
|
X, y = datasets.fetch_openml(data_id=42165, as_frame=True, return_X_y=True)
|
|
|
|
categorical_columns_subset: List[str] = [
|
|
"BldgType", # 5 cats, no nan
|
|
"GarageFinish", # 3 cats, nan
|
|
"LotConfig", # 5 cats, no nan
|
|
"Functional", # 7 cats, no nan
|
|
"MasVnrType", # 4 cats, nan
|
|
"HouseStyle", # 8 cats, no nan
|
|
"FireplaceQu", # 5 cats, nan
|
|
"ExterCond", # 5 cats, no nan
|
|
"ExterQual", # 4 cats, no nan
|
|
"PoolQC", # 3 cats, nan
|
|
]
|
|
|
|
numerical_columns_subset: List[str] = [
|
|
"3SsnPorch",
|
|
"Fireplaces",
|
|
"BsmtHalfBath",
|
|
"HalfBath",
|
|
"GarageCars",
|
|
"TotRmsAbvGrd",
|
|
"BsmtFinSF1",
|
|
"BsmtFinSF2",
|
|
"GrLivArea",
|
|
"ScreenPorch",
|
|
]
|
|
|
|
X = X[categorical_columns_subset + numerical_columns_subset]
|
|
X[categorical_columns_subset] = X[categorical_columns_subset].astype("category")
|
|
return X, y
|
|
|
|
|
|
@memory.cache
|
|
def get_mq2008(
|
|
dpath: str,
|
|
) -> Tuple[
|
|
sparse.csr_matrix,
|
|
np.ndarray,
|
|
np.ndarray,
|
|
sparse.csr_matrix,
|
|
np.ndarray,
|
|
np.ndarray,
|
|
sparse.csr_matrix,
|
|
np.ndarray,
|
|
np.ndarray,
|
|
]:
|
|
"""Fetch the mq2008 dataset."""
|
|
datasets = pytest.importorskip("sklearn.datasets")
|
|
src = "https://s3-us-west-2.amazonaws.com/xgboost-examples/MQ2008.zip"
|
|
target = os.path.join(dpath, "MQ2008.zip")
|
|
if not os.path.exists(target):
|
|
request.urlretrieve(url=src, filename=target)
|
|
|
|
with zipfile.ZipFile(target, "r") as f:
|
|
f.extractall(path=dpath)
|
|
|
|
(
|
|
x_train,
|
|
y_train,
|
|
qid_train,
|
|
x_test,
|
|
y_test,
|
|
qid_test,
|
|
x_valid,
|
|
y_valid,
|
|
qid_valid,
|
|
) = datasets.load_svmlight_files(
|
|
(
|
|
os.path.join(dpath, "MQ2008/Fold1/train.txt"),
|
|
os.path.join(dpath, "MQ2008/Fold1/test.txt"),
|
|
os.path.join(dpath, "MQ2008/Fold1/vali.txt"),
|
|
),
|
|
query_id=True,
|
|
zero_based=False,
|
|
)
|
|
|
|
return (
|
|
x_train,
|
|
y_train,
|
|
qid_train,
|
|
x_test,
|
|
y_test,
|
|
qid_test,
|
|
x_valid,
|
|
y_valid,
|
|
qid_valid,
|
|
)
|
|
|
|
|
|
RelData = Tuple[sparse.csr_matrix, npt.NDArray[np.int32], npt.NDArray[np.int32]]
|
|
|
|
|
|
@dataclass
|
|
class ClickFold:
|
|
"""A structure containing information about generated user-click data."""
|
|
|
|
X: sparse.csr_matrix
|
|
y: npt.NDArray[np.int32]
|
|
qid: npt.NDArray[np.int32]
|
|
score: npt.NDArray[np.float32]
|
|
click: npt.NDArray[np.int32]
|
|
pos: npt.NDArray[np.int64]
|
|
|
|
|
|
class RelDataCV(NamedTuple):
|
|
"""Simple data struct for holding a train-test split of a learning to rank dataset."""
|
|
|
|
train: RelData
|
|
test: RelData
|
|
max_rel: int
|
|
|
|
def is_binary(self) -> bool:
|
|
"""Whether the label consists of binary relevance degree."""
|
|
return self.max_rel == 1
|
|
|
|
|
|
class PBM: # pylint: disable=too-few-public-methods
|
|
"""Simulate click data with position bias model. There are other models available in
|
|
`ULTRA <https://github.com/ULTR-Community/ULTRA.git>`_ like the cascading model.
|
|
|
|
References
|
|
----------
|
|
Unbiased LambdaMART: An Unbiased Pairwise Learning-to-Rank Algorithm
|
|
|
|
"""
|
|
|
|
def __init__(self, eta: float) -> None:
|
|
# click probability for each relevance degree. (from 0 to 4)
|
|
self.click_prob = np.array([0.1, 0.16, 0.28, 0.52, 1.0])
|
|
exam_prob = np.array(
|
|
[0.68, 0.61, 0.48, 0.34, 0.28, 0.20, 0.11, 0.10, 0.08, 0.06]
|
|
)
|
|
# Observation probability, encoding positional bias for each position
|
|
self.exam_prob = np.power(exam_prob, eta)
|
|
|
|
def sample_clicks_for_query(
|
|
self, labels: npt.NDArray[np.int32], position: npt.NDArray[np.int64]
|
|
) -> npt.NDArray[np.int32]:
|
|
"""Sample clicks for one query based on input relevance degree and position.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
labels :
|
|
relevance_degree
|
|
|
|
"""
|
|
labels = np.array(labels, copy=True)
|
|
|
|
click_prob = np.zeros(labels.shape)
|
|
# minimum
|
|
labels[labels < 0] = 0
|
|
# maximum
|
|
labels[labels >= len(self.click_prob)] = -1
|
|
click_prob = self.click_prob[labels]
|
|
|
|
exam_prob = np.zeros(labels.shape)
|
|
assert position.size == labels.size
|
|
ranks = np.array(position, copy=True)
|
|
# maximum
|
|
ranks[ranks >= self.exam_prob.size] = -1
|
|
exam_prob = self.exam_prob[ranks]
|
|
|
|
rng = np.random.default_rng(1994)
|
|
prob = rng.random(size=labels.shape[0], dtype=np.float32)
|
|
|
|
clicks: npt.NDArray[np.int32] = np.zeros(labels.shape, dtype=np.int32)
|
|
clicks[prob < exam_prob * click_prob] = 1
|
|
return clicks
|
|
|
|
|
|
def rlencode(x: npt.NDArray[np.int32]) -> Tuple[npt.NDArray, npt.NDArray, npt.NDArray]:
|
|
"""Run length encoding using numpy, modified from:
|
|
https://gist.github.com/nvictus/66627b580c13068589957d6ab0919e66
|
|
|
|
"""
|
|
x = np.asarray(x)
|
|
n = x.size
|
|
starts = np.r_[0, np.flatnonzero(~np.isclose(x[1:], x[:-1], equal_nan=True)) + 1]
|
|
lengths = np.diff(np.r_[starts, n])
|
|
values = x[starts]
|
|
indptr = np.append(starts, np.array([x.size]))
|
|
|
|
return indptr, lengths, values
|
|
|
|
|
|
def init_rank_score(
|
|
X: sparse.csr_matrix,
|
|
y: npt.NDArray[np.int32],
|
|
qid: npt.NDArray[np.int32],
|
|
sample_rate: float = 0.1,
|
|
) -> npt.NDArray[np.float32]:
|
|
"""We use XGBoost to generate the initial score instead of SVMRank for
|
|
simplicity. Sample rate is set to 0.1 by default so that we can test with small
|
|
datasets.
|
|
|
|
"""
|
|
# random sample
|
|
rng = np.random.default_rng(1994)
|
|
n_samples = int(X.shape[0] * sample_rate)
|
|
index = np.arange(0, X.shape[0], dtype=np.uint64)
|
|
rng.shuffle(index)
|
|
index = index[:n_samples]
|
|
|
|
X_train = X[index]
|
|
y_train = y[index]
|
|
qid_train = qid[index]
|
|
|
|
# Sort training data based on query id, required by XGBoost.
|
|
sorted_idx = np.argsort(qid_train)
|
|
X_train = X_train[sorted_idx]
|
|
y_train = y_train[sorted_idx]
|
|
qid_train = qid_train[sorted_idx]
|
|
|
|
ltr = xgboost.XGBRanker(objective="rank:ndcg", tree_method="hist")
|
|
ltr.fit(X_train, y_train, qid=qid_train)
|
|
|
|
# Use the original order of the data.
|
|
scores = ltr.predict(X)
|
|
return scores
|
|
|
|
|
|
def simulate_one_fold(
|
|
fold: Tuple[sparse.csr_matrix, npt.NDArray[np.int32], npt.NDArray[np.int32]],
|
|
scores_fold: npt.NDArray[np.float32],
|
|
) -> ClickFold:
|
|
"""Simulate clicks for one fold."""
|
|
X_fold, y_fold, qid_fold = fold
|
|
assert qid_fold.dtype == np.int32
|
|
|
|
qids = np.unique(qid_fold)
|
|
|
|
position = np.empty((y_fold.size,), dtype=np.int64)
|
|
clicks = np.empty((y_fold.size,), dtype=np.int32)
|
|
pbm = PBM(eta=1.0)
|
|
|
|
# Avoid grouping by qid as we want to preserve the original data partition by
|
|
# the dataset authors.
|
|
for q in qids:
|
|
qid_mask = q == qid_fold
|
|
qid_mask = qid_mask.reshape(qid_mask.shape[0])
|
|
query_scores = scores_fold[qid_mask]
|
|
# Initial rank list, scores sorted to decreasing order
|
|
query_position = np.argsort(query_scores)[::-1]
|
|
position[qid_mask] = query_position
|
|
# get labels
|
|
relevance_degrees = y_fold[qid_mask]
|
|
query_clicks = pbm.sample_clicks_for_query(relevance_degrees, query_position)
|
|
clicks[qid_mask] = query_clicks
|
|
|
|
assert X_fold.shape[0] == qid_fold.shape[0], (X_fold.shape, qid_fold.shape)
|
|
assert X_fold.shape[0] == clicks.shape[0], (X_fold.shape, clicks.shape)
|
|
|
|
return ClickFold(X_fold, y_fold, qid_fold, scores_fold, clicks, position)
|
|
|
|
|
|
# pylint: disable=too-many-locals
|
|
def simulate_clicks(cv_data: RelDataCV) -> Tuple[ClickFold, Optional[ClickFold]]:
|
|
"""Simulate click data using position biased model (PBM)."""
|
|
X, y, qid = list(zip(cv_data.train, cv_data.test))
|
|
|
|
# ptr to train-test split
|
|
indptr = np.array([0] + [v.shape[0] for v in X])
|
|
indptr = np.cumsum(indptr)
|
|
|
|
assert len(indptr) == 2 + 1 # train, test
|
|
X_full = sparse.vstack(X)
|
|
y_full = np.concatenate(y)
|
|
qid_full = np.concatenate(qid)
|
|
|
|
# Obtain initial relevance score for click simulation
|
|
scores_full = init_rank_score(X_full, y_full, qid_full)
|
|
# partition it back to (train, test) tuple
|
|
scores = [scores_full[indptr[i - 1] : indptr[i]] for i in range(1, indptr.size)]
|
|
|
|
X_lst, y_lst, q_lst, s_lst, c_lst, p_lst = [], [], [], [], [], []
|
|
for i in range(indptr.size - 1):
|
|
fold = simulate_one_fold((X[i], y[i], qid[i]), scores[i])
|
|
X_lst.append(fold.X)
|
|
y_lst.append(fold.y)
|
|
q_lst.append(fold.qid)
|
|
s_lst.append(fold.score)
|
|
c_lst.append(fold.click)
|
|
p_lst.append(fold.pos)
|
|
|
|
scores_check_1 = [s_lst[i] for i in range(indptr.size - 1)]
|
|
for i in range(2):
|
|
assert (scores_check_1[i] == scores[i]).all()
|
|
|
|
if len(X_lst) == 1:
|
|
train = ClickFold(X_lst[0], y_lst[0], q_lst[0], s_lst[0], c_lst[0], p_lst[0])
|
|
test = None
|
|
else:
|
|
train, test = (
|
|
ClickFold(X_lst[i], y_lst[i], q_lst[i], s_lst[i], c_lst[i], p_lst[i])
|
|
for i in range(len(X_lst))
|
|
)
|
|
return train, test
|
|
|
|
|
|
def sort_ltr_samples(
|
|
X: sparse.csr_matrix,
|
|
y: npt.NDArray[np.int32],
|
|
qid: npt.NDArray[np.int32],
|
|
clicks: npt.NDArray[np.int32],
|
|
pos: npt.NDArray[np.int64],
|
|
) -> Tuple[
|
|
sparse.csr_matrix,
|
|
npt.NDArray[np.int32],
|
|
npt.NDArray[np.int32],
|
|
npt.NDArray[np.int32],
|
|
]:
|
|
"""Sort data based on query index and position."""
|
|
sorted_idx = np.argsort(qid)
|
|
X = X[sorted_idx]
|
|
clicks = clicks[sorted_idx]
|
|
qid = qid[sorted_idx]
|
|
pos = pos[sorted_idx]
|
|
|
|
indptr, _, _ = rlencode(qid)
|
|
|
|
for i in range(1, indptr.size):
|
|
beg = indptr[i - 1]
|
|
end = indptr[i]
|
|
|
|
assert beg < end, (beg, end)
|
|
assert np.unique(qid[beg:end]).size == 1, (beg, end)
|
|
|
|
query_pos = pos[beg:end]
|
|
assert query_pos.min() == 0, query_pos.min()
|
|
assert query_pos.max() >= query_pos.size - 1, (
|
|
query_pos.max(),
|
|
query_pos.size,
|
|
i,
|
|
np.unique(qid[beg:end]),
|
|
)
|
|
sorted_idx = np.argsort(query_pos)
|
|
|
|
X[beg:end] = X[beg:end][sorted_idx]
|
|
clicks[beg:end] = clicks[beg:end][sorted_idx]
|
|
y[beg:end] = y[beg:end][sorted_idx]
|
|
# not necessary
|
|
qid[beg:end] = qid[beg:end][sorted_idx]
|
|
|
|
data = X, clicks, y, qid
|
|
|
|
return data
|