- Implement colsampling, subsampling for gpu_hist_experimental - Optimised multi-GPU implementation for gpu_hist_experimental - Make nccl optional - Add Volta architecture flag - Optimise RegLossObj - Add timing utilities for debug verbose mode - Bump required cuda version to 8.0
66 lines
2.6 KiB
Python
66 lines
2.6 KiB
Python
# pylint: skip-file
|
|
import sys, argparse
|
|
import xgboost as xgb
|
|
import numpy as np
|
|
from sklearn.datasets import make_classification
|
|
from sklearn.model_selection import train_test_split
|
|
import time
|
|
import ast
|
|
|
|
rng = np.random.RandomState(1994)
|
|
|
|
|
|
def run_benchmark(args):
|
|
|
|
try:
|
|
dtest = xgb.DMatrix('dtest.dm')
|
|
dtrain = xgb.DMatrix('dtrain.dm')
|
|
|
|
if not (dtest.num_col() == args.columns \
|
|
and dtrain.num_col() == args.columns):
|
|
raise ValueError("Wrong cols")
|
|
if not (dtest.num_row() == args.rows * args.test_size \
|
|
and dtrain.num_row() == args.rows * (1-args.test_size)):
|
|
raise ValueError("Wrong rows")
|
|
except:
|
|
|
|
print("Generating dataset: {} rows * {} columns".format(args.rows, args.columns))
|
|
print("{}/{} test/train split".format(args.test_size, 1.0 - args.test_size))
|
|
tmp = time.time()
|
|
X, y = make_classification(args.rows, n_features=args.columns, n_redundant=0, n_informative=args.columns, n_repeated=0, random_state=7)
|
|
if args.sparsity < 1.0:
|
|
X = np.array([[np.nan if rng.uniform(0, 1) < args.sparsity else x for x in x_row] for x_row in X])
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=args.test_size, random_state=7)
|
|
print ("Generate Time: %s seconds" % (str(time.time() - tmp)))
|
|
tmp = time.time()
|
|
print ("DMatrix Start")
|
|
dtrain = xgb.DMatrix(X_train, y_train)
|
|
dtest = xgb.DMatrix(X_test, y_test, nthread=-1)
|
|
print ("DMatrix Time: %s seconds" % (str(time.time() - tmp)))
|
|
|
|
dtest.save_binary('dtest.dm')
|
|
dtrain.save_binary('dtrain.dm')
|
|
|
|
param = {'objective': 'binary:logistic'}
|
|
if args.params is not '':
|
|
param.update(ast.literal_eval(args.params))
|
|
|
|
param['tree_method'] = args.tree_method
|
|
print("Training with '%s'" % param['tree_method'])
|
|
tmp = time.time()
|
|
xgb.train(param, dtrain, args.iterations, evals=[(dtest, "test")])
|
|
print ("Train Time: %s seconds" % (str(time.time() - tmp)))
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--tree_method', default='gpu_hist')
|
|
parser.add_argument('--sparsity', type=float, default=0.0)
|
|
parser.add_argument('--rows', type=int, default=1000000)
|
|
parser.add_argument('--columns', type=int, default=50)
|
|
parser.add_argument('--iterations', type=int, default=500)
|
|
parser.add_argument('--test_size', type=float, default=0.25)
|
|
parser.add_argument('--params', default='', help='Provide additional parameters as a Python dict string, e.g. --params \"{\'max_depth\':2}\"')
|
|
args = parser.parse_args()
|
|
|
|
run_benchmark(args)
|