* Support binary/multi-class classification, ranking. * Add documents. * Handle missing data.
59 lines
1.8 KiB
Python
59 lines
1.8 KiB
Python
import sys
|
|
import xgboost
|
|
import pytest
|
|
|
|
sys.path.append("tests/python")
|
|
import test_eval_metrics as test_em # noqa
|
|
|
|
|
|
class TestGPUEvalMetrics:
|
|
cpu_test = test_em.TestEvalMetrics()
|
|
|
|
@pytest.mark.parametrize("n_samples", [4, 100, 1000])
|
|
def test_roc_auc_binary(self, n_samples):
|
|
self.cpu_test.run_roc_auc_binary("gpu_hist", n_samples)
|
|
|
|
@pytest.mark.parametrize(
|
|
"n_samples,weighted", [(4, False), (100, False), (1000, False), (1000, True)]
|
|
)
|
|
def test_roc_auc_multi(self, n_samples, weighted):
|
|
self.cpu_test.run_roc_auc_multi("gpu_hist", n_samples, weighted)
|
|
|
|
@pytest.mark.parametrize("n_samples", [4, 100, 1000])
|
|
def test_roc_auc_ltr(self, n_samples):
|
|
import numpy as np
|
|
|
|
rng = np.random.RandomState(1994)
|
|
n_samples = n_samples
|
|
n_features = 10
|
|
X = rng.randn(n_samples, n_features)
|
|
y = rng.randint(0, 16, size=n_samples)
|
|
group = np.array([n_samples // 2, n_samples // 2])
|
|
|
|
Xy = xgboost.DMatrix(X, y, group=group)
|
|
|
|
cpu = xgboost.train(
|
|
{"tree_method": "hist", "eval_metric": "auc", "objective": "rank:ndcg"},
|
|
Xy,
|
|
num_boost_round=10,
|
|
)
|
|
cpu_auc = float(cpu.eval(Xy).split(":")[1])
|
|
|
|
gpu = xgboost.train(
|
|
{"tree_method": "gpu_hist", "eval_metric": "auc", "objective": "rank:ndcg"},
|
|
Xy,
|
|
num_boost_round=10,
|
|
)
|
|
gpu_auc = float(gpu.eval(Xy).split(":")[1])
|
|
|
|
np.testing.assert_allclose(cpu_auc, gpu_auc)
|
|
|
|
def test_pr_auc_binary(self):
|
|
self.cpu_test.run_pr_auc_binary("gpu_hist")
|
|
|
|
def test_pr_auc_multi(self):
|
|
self.cpu_test.run_pr_auc_multi("gpu_hist")
|
|
|
|
def test_pr_auc_ltr(self):
|
|
self.cpu_test.run_pr_auc_ltr("gpu_hist")
|