- Remove unused parameters. There are still many warnings that are not yet addressed. Currently, the warnings in dmlc-core dominate the error log. - Remove `distributed` parameter from metric. - Fixes some warnings about signed comparison.
493 lines
17 KiB
Plaintext
493 lines
17 KiB
Plaintext
/*!
|
|
* Copyright 2017-2022 XGBoost contributors
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
#include <thrust/device_vector.h>
|
|
#include <thrust/host_vector.h>
|
|
#include <dmlc/filesystem.h>
|
|
#include <xgboost/base.h>
|
|
#include <random>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "../helpers.h"
|
|
#include "../histogram_helpers.h"
|
|
|
|
#include "xgboost/generic_parameters.h"
|
|
#include "xgboost/json.h"
|
|
#include "../../../src/data/sparse_page_source.h"
|
|
#include "../../../src/tree/updater_gpu_hist.cu"
|
|
#include "../../../src/tree/updater_gpu_common.cuh"
|
|
#include "../../../src/common/common.h"
|
|
#include "../../../src/tree/constraints.cuh"
|
|
|
|
namespace xgboost {
|
|
namespace tree {
|
|
TEST(GpuHist, DeviceHistogram) {
|
|
// Ensures that node allocates correctly after reaching `kStopGrowingSize`.
|
|
dh::safe_cuda(cudaSetDevice(0));
|
|
constexpr size_t kNBins = 128;
|
|
constexpr int kNNodes = 4;
|
|
constexpr size_t kStopGrowing = kNNodes * kNBins * 2u;
|
|
DeviceHistogramStorage<GradientPairPrecise, kStopGrowing> histogram;
|
|
histogram.Init(0, kNBins);
|
|
for (int i = 0; i < kNNodes; ++i) {
|
|
histogram.AllocateHistograms({i});
|
|
}
|
|
histogram.Reset();
|
|
ASSERT_EQ(histogram.Data().size(), kStopGrowing);
|
|
|
|
// Use allocated memory but do not erase nidx_map.
|
|
for (int i = 0; i < kNNodes; ++i) {
|
|
histogram.AllocateHistograms({i});
|
|
}
|
|
for (int i = 0; i < kNNodes; ++i) {
|
|
ASSERT_TRUE(histogram.HistogramExists(i));
|
|
}
|
|
|
|
// Add two new nodes
|
|
histogram.AllocateHistograms({kNNodes});
|
|
histogram.AllocateHistograms({kNNodes + 1});
|
|
|
|
// Old cached nodes should still exist
|
|
for (int i = 0; i < kNNodes; ++i) {
|
|
ASSERT_TRUE(histogram.HistogramExists(i));
|
|
}
|
|
|
|
// Should be deleted
|
|
ASSERT_FALSE(histogram.HistogramExists(kNNodes));
|
|
// Most recent node should exist
|
|
ASSERT_TRUE(histogram.HistogramExists(kNNodes + 1));
|
|
|
|
// Add same node again - should fail
|
|
EXPECT_ANY_THROW(histogram.AllocateHistograms({kNNodes + 1}););
|
|
}
|
|
|
|
std::vector<GradientPairPrecise> GetHostHistGpair() {
|
|
// 24 bins, 3 bins for each feature (column).
|
|
std::vector<GradientPairPrecise> hist_gpair = {
|
|
{0.8314f, 0.7147f}, {1.7989f, 3.7312f}, {3.3846f, 3.4598f},
|
|
{2.9277f, 3.5886f}, {1.8429f, 2.4152f}, {1.2443f, 1.9019f},
|
|
{1.6380f, 2.9174f}, {1.5657f, 2.5107f}, {2.8111f, 2.4776f},
|
|
{2.1322f, 3.0651f}, {3.2927f, 3.8540f}, {0.5899f, 0.9866f},
|
|
{1.5185f, 1.6263f}, {2.0686f, 3.1844f}, {2.4278f, 3.0950f},
|
|
{1.5105f, 2.1403f}, {2.6922f, 4.2217f}, {1.8122f, 1.5437f},
|
|
{0.0000f, 0.0000f}, {4.3245f, 5.7955f}, {1.6903f, 2.1103f},
|
|
{2.4012f, 4.4754f}, {3.6136f, 3.4303f}, {0.0000f, 0.0000f}
|
|
};
|
|
return hist_gpair;
|
|
}
|
|
|
|
template <typename GradientSumT>
|
|
void TestBuildHist(bool use_shared_memory_histograms) {
|
|
int const kNRows = 16, kNCols = 8;
|
|
|
|
TrainParam param;
|
|
std::vector<std::pair<std::string, std::string>> args {
|
|
{"max_depth", "6"},
|
|
{"max_leaves", "0"},
|
|
};
|
|
param.Init(args);
|
|
auto page = BuildEllpackPage(kNRows, kNCols);
|
|
BatchParam batch_param{};
|
|
Context ctx{CreateEmptyGenericParam(0)};
|
|
GPUHistMakerDevice<GradientSumT> maker(&ctx, page.get(), {}, kNRows, param, kNCols, kNCols,
|
|
batch_param);
|
|
xgboost::SimpleLCG gen;
|
|
xgboost::SimpleRealUniformDistribution<bst_float> dist(0.0f, 1.0f);
|
|
HostDeviceVector<GradientPair> gpair(kNRows);
|
|
for (auto &gp : gpair.HostVector()) {
|
|
bst_float grad = dist(&gen);
|
|
bst_float hess = dist(&gen);
|
|
gp = GradientPair(grad, hess);
|
|
}
|
|
gpair.SetDevice(0);
|
|
|
|
thrust::host_vector<common::CompressedByteT> h_gidx_buffer (page->gidx_buffer.HostVector());
|
|
maker.row_partitioner.reset(new RowPartitioner(0, kNRows));
|
|
maker.hist.AllocateHistograms({0});
|
|
maker.gpair = gpair.DeviceSpan();
|
|
maker.histogram_rounding = CreateRoundingFactor<GradientSumT>(maker.gpair);
|
|
|
|
BuildGradientHistogram(
|
|
page->GetDeviceAccessor(0), maker.feature_groups->DeviceAccessor(0),
|
|
gpair.DeviceSpan(), maker.row_partitioner->GetRows(0),
|
|
maker.hist.GetNodeHistogram(0), maker.histogram_rounding,
|
|
!use_shared_memory_histograms);
|
|
|
|
DeviceHistogramStorage<GradientSumT>& d_hist = maker.hist;
|
|
|
|
auto node_histogram = d_hist.GetNodeHistogram(0);
|
|
// d_hist.data stored in float, not gradient pair
|
|
thrust::host_vector<GradientSumT> h_result (d_hist.Data().size() / 2);
|
|
size_t data_size =
|
|
sizeof(GradientSumT) /
|
|
(sizeof(GradientSumT) / sizeof(typename GradientSumT::ValueT));
|
|
data_size *= d_hist.Data().size();
|
|
dh::safe_cuda(cudaMemcpy(h_result.data(), node_histogram.data(), data_size,
|
|
cudaMemcpyDeviceToHost));
|
|
|
|
std::vector<GradientPairPrecise> solution = GetHostHistGpair();
|
|
std::cout << std::fixed;
|
|
for (size_t i = 0; i < h_result.size(); ++i) {
|
|
ASSERT_FALSE(std::isnan(h_result[i].GetGrad()));
|
|
EXPECT_NEAR(h_result[i].GetGrad(), solution[i].GetGrad(), 0.01f);
|
|
EXPECT_NEAR(h_result[i].GetHess(), solution[i].GetHess(), 0.01f);
|
|
}
|
|
}
|
|
|
|
TEST(GpuHist, BuildHistGlobalMem) {
|
|
TestBuildHist<GradientPairPrecise>(false);
|
|
}
|
|
|
|
TEST(GpuHist, BuildHistSharedMem) {
|
|
TestBuildHist<GradientPairPrecise>(true);
|
|
}
|
|
|
|
HistogramCutsWrapper GetHostCutMatrix () {
|
|
HistogramCutsWrapper cmat;
|
|
cmat.SetPtrs({0, 3, 6, 9, 12, 15, 18, 21, 24});
|
|
cmat.SetMins({0.1f, 0.2f, 0.3f, 0.1f, 0.2f, 0.3f, 0.2f, 0.2f});
|
|
// 24 cut fields, 3 cut fields for each feature (column).
|
|
// Each row of the cut represents the cuts for a data column.
|
|
cmat.SetValues({0.30f, 0.67f, 1.64f,
|
|
0.32f, 0.77f, 1.95f,
|
|
0.29f, 0.70f, 1.80f,
|
|
0.32f, 0.75f, 1.85f,
|
|
0.18f, 0.59f, 1.69f,
|
|
0.25f, 0.74f, 2.00f,
|
|
0.26f, 0.74f, 1.98f,
|
|
0.26f, 0.71f, 1.83f});
|
|
return cmat;
|
|
}
|
|
|
|
// TODO(trivialfis): This test is over simplified.
|
|
TEST(GpuHist, EvaluateRootSplit) {
|
|
constexpr int kNRows = 16;
|
|
constexpr int kNCols = 8;
|
|
|
|
TrainParam param;
|
|
|
|
std::vector<std::pair<std::string, std::string>> args{
|
|
{"max_depth", "1"},
|
|
{"max_leaves", "0"},
|
|
|
|
// Disable all other parameters.
|
|
{"colsample_bynode", "1"},
|
|
{"colsample_bylevel", "1"},
|
|
{"colsample_bytree", "1"},
|
|
{"min_child_weight", "0.01"},
|
|
{"reg_alpha", "0"},
|
|
{"reg_lambda", "0"},
|
|
{"max_delta_step", "0"}};
|
|
param.Init(args);
|
|
for (size_t i = 0; i < kNCols; ++i) {
|
|
param.monotone_constraints.emplace_back(0);
|
|
}
|
|
|
|
int max_bins = 4;
|
|
|
|
// Initialize GPUHistMakerDevice
|
|
auto page = BuildEllpackPage(kNRows, kNCols);
|
|
BatchParam batch_param{};
|
|
Context ctx{CreateEmptyGenericParam(0)};
|
|
GPUHistMakerDevice<GradientPairPrecise> maker(&ctx, page.get(), {}, kNRows, param, kNCols, kNCols,
|
|
batch_param);
|
|
// Initialize GPUHistMakerDevice::node_sum_gradients
|
|
maker.node_sum_gradients = {};
|
|
|
|
// Initialize GPUHistMakerDevice::cut
|
|
auto cmat = GetHostCutMatrix();
|
|
|
|
// Copy cut matrix to device.
|
|
page->Cuts() = cmat;
|
|
maker.monotone_constraints = param.monotone_constraints;
|
|
|
|
// Initialize GPUHistMakerDevice::hist
|
|
maker.hist.Init(0, (max_bins - 1) * kNCols);
|
|
maker.hist.AllocateHistograms({0});
|
|
// Each row of hist_gpair represents gpairs for one feature.
|
|
// Each entry represents a bin.
|
|
std::vector<GradientPairPrecise> hist_gpair = GetHostHistGpair();
|
|
std::vector<bst_float> hist;
|
|
for (auto pair : hist_gpair) {
|
|
hist.push_back(pair.GetGrad());
|
|
hist.push_back(pair.GetHess());
|
|
}
|
|
|
|
ASSERT_EQ(maker.hist.Data().size(), hist.size());
|
|
thrust::copy(hist.begin(), hist.end(),
|
|
maker.hist.Data().begin());
|
|
std::vector<float> feature_weights;
|
|
|
|
maker.column_sampler.Init(kNCols, feature_weights, param.colsample_bynode,
|
|
param.colsample_bylevel, param.colsample_bytree);
|
|
|
|
RegTree tree;
|
|
MetaInfo info;
|
|
info.num_row_ = kNRows;
|
|
info.num_col_ = kNCols;
|
|
|
|
DeviceSplitCandidate res =
|
|
maker.EvaluateRootSplit({6.4f, 12.8f}, 0).split;
|
|
|
|
ASSERT_EQ(res.findex, 7);
|
|
ASSERT_NEAR(res.fvalue, 0.26, xgboost::kRtEps);
|
|
}
|
|
|
|
void TestHistogramIndexImpl() {
|
|
// Test if the compressed histogram index matches when using a sparse
|
|
// dmatrix with and without using external memory
|
|
|
|
int constexpr kNRows = 1000, kNCols = 10;
|
|
|
|
// Build 2 matrices and build a histogram maker with that
|
|
|
|
GenericParameter generic_param(CreateEmptyGenericParam(0));
|
|
tree::GPUHistMaker hist_maker{&generic_param,ObjInfo{ObjInfo::kRegression}},
|
|
hist_maker_ext{&generic_param,ObjInfo{ObjInfo::kRegression}};
|
|
std::unique_ptr<DMatrix> hist_maker_dmat(
|
|
CreateSparsePageDMatrixWithRC(kNRows, kNCols, 0, true));
|
|
|
|
dmlc::TemporaryDirectory tempdir;
|
|
std::unique_ptr<DMatrix> hist_maker_ext_dmat(
|
|
CreateSparsePageDMatrixWithRC(kNRows, kNCols, 128UL, true, tempdir));
|
|
|
|
std::vector<std::pair<std::string, std::string>> training_params = {
|
|
{"max_depth", "10"},
|
|
{"max_leaves", "0"}
|
|
};
|
|
|
|
hist_maker.Configure(training_params);
|
|
hist_maker.InitDataOnce(hist_maker_dmat.get());
|
|
hist_maker_ext.Configure(training_params);
|
|
hist_maker_ext.InitDataOnce(hist_maker_ext_dmat.get());
|
|
|
|
// Extract the device maker from the histogram makers and from that its compressed
|
|
// histogram index
|
|
const auto &maker = hist_maker.maker;
|
|
auto grad = GenerateRandomGradients(kNRows);
|
|
grad.SetDevice(0);
|
|
maker->Reset(&grad, hist_maker_dmat.get(), kNCols);
|
|
std::vector<common::CompressedByteT> h_gidx_buffer(maker->page->gidx_buffer.HostVector());
|
|
|
|
const auto &maker_ext = hist_maker_ext.maker;
|
|
maker_ext->Reset(&grad, hist_maker_ext_dmat.get(), kNCols);
|
|
std::vector<common::CompressedByteT> h_gidx_buffer_ext(maker_ext->page->gidx_buffer.HostVector());
|
|
|
|
ASSERT_EQ(maker->page->Cuts().TotalBins(), maker_ext->page->Cuts().TotalBins());
|
|
ASSERT_EQ(maker->page->gidx_buffer.Size(), maker_ext->page->gidx_buffer.Size());
|
|
}
|
|
|
|
TEST(GpuHist, TestHistogramIndex) {
|
|
TestHistogramIndexImpl();
|
|
}
|
|
|
|
void UpdateTree(HostDeviceVector<GradientPair>* gpair, DMatrix* dmat,
|
|
size_t gpu_page_size, RegTree* tree,
|
|
HostDeviceVector<bst_float>* preds, float subsample = 1.0f,
|
|
const std::string& sampling_method = "uniform",
|
|
int max_bin = 2) {
|
|
|
|
if (gpu_page_size > 0) {
|
|
// Loop over the batches and count the records
|
|
int64_t batch_count = 0;
|
|
int64_t row_count = 0;
|
|
for (const auto& batch : dmat->GetBatches<EllpackPage>({0, max_bin})) {
|
|
EXPECT_LT(batch.Size(), dmat->Info().num_row_);
|
|
batch_count++;
|
|
row_count += batch.Size();
|
|
}
|
|
EXPECT_GE(batch_count, 2);
|
|
EXPECT_EQ(row_count, dmat->Info().num_row_);
|
|
}
|
|
|
|
Args args{
|
|
{"max_depth", "2"},
|
|
{"max_bin", std::to_string(max_bin)},
|
|
{"min_child_weight", "0.0"},
|
|
{"reg_alpha", "0"},
|
|
{"reg_lambda", "0"},
|
|
{"subsample", std::to_string(subsample)},
|
|
{"sampling_method", sampling_method},
|
|
};
|
|
|
|
GenericParameter generic_param(CreateEmptyGenericParam(0));
|
|
tree::GPUHistMaker hist_maker{&generic_param,ObjInfo{ObjInfo::kRegression}};
|
|
hist_maker.Configure(args);
|
|
|
|
std::vector<HostDeviceVector<bst_node_t>> position(1);
|
|
hist_maker.Update(gpair, dmat, common::Span<HostDeviceVector<bst_node_t>>{position}, {tree});
|
|
auto cache = linalg::VectorView<float>{preds->DeviceSpan(), {preds->Size()}, 0};
|
|
hist_maker.UpdatePredictionCache(dmat, cache);
|
|
}
|
|
|
|
TEST(GpuHist, UniformSampling) {
|
|
constexpr size_t kRows = 4096;
|
|
constexpr size_t kCols = 2;
|
|
constexpr float kSubsample = 0.9999;
|
|
common::GlobalRandom().seed(1994);
|
|
|
|
// Create an in-memory DMatrix.
|
|
std::unique_ptr<DMatrix> dmat(CreateSparsePageDMatrixWithRC(kRows, kCols, 0, true));
|
|
|
|
auto gpair = GenerateRandomGradients(kRows);
|
|
|
|
// Build a tree using the in-memory DMatrix.
|
|
RegTree tree;
|
|
HostDeviceVector<bst_float> preds(kRows, 0.0, 0);
|
|
UpdateTree(&gpair, dmat.get(), 0, &tree, &preds, 1.0, "uniform", kRows);
|
|
// Build another tree using sampling.
|
|
RegTree tree_sampling;
|
|
HostDeviceVector<bst_float> preds_sampling(kRows, 0.0, 0);
|
|
UpdateTree(&gpair, dmat.get(), 0, &tree_sampling, &preds_sampling, kSubsample,
|
|
"uniform", kRows);
|
|
|
|
// Make sure the predictions are the same.
|
|
auto preds_h = preds.ConstHostVector();
|
|
auto preds_sampling_h = preds_sampling.ConstHostVector();
|
|
for (size_t i = 0; i < kRows; i++) {
|
|
EXPECT_NEAR(preds_h[i], preds_sampling_h[i], 1e-8);
|
|
}
|
|
}
|
|
|
|
TEST(GpuHist, GradientBasedSampling) {
|
|
constexpr size_t kRows = 4096;
|
|
constexpr size_t kCols = 2;
|
|
constexpr float kSubsample = 0.9999;
|
|
common::GlobalRandom().seed(1994);
|
|
|
|
// Create an in-memory DMatrix.
|
|
std::unique_ptr<DMatrix> dmat(CreateSparsePageDMatrixWithRC(kRows, kCols, 0, true));
|
|
|
|
auto gpair = GenerateRandomGradients(kRows);
|
|
|
|
// Build a tree using the in-memory DMatrix.
|
|
RegTree tree;
|
|
HostDeviceVector<bst_float> preds(kRows, 0.0, 0);
|
|
UpdateTree(&gpair, dmat.get(), 0, &tree, &preds, 1.0, "uniform", kRows);
|
|
|
|
// Build another tree using sampling.
|
|
RegTree tree_sampling;
|
|
HostDeviceVector<bst_float> preds_sampling(kRows, 0.0, 0);
|
|
UpdateTree(&gpair, dmat.get(), 0, &tree_sampling, &preds_sampling, kSubsample,
|
|
"gradient_based", kRows);
|
|
|
|
// Make sure the predictions are the same.
|
|
auto preds_h = preds.ConstHostVector();
|
|
auto preds_sampling_h = preds_sampling.ConstHostVector();
|
|
for (size_t i = 0; i < kRows; i++) {
|
|
EXPECT_NEAR(preds_h[i], preds_sampling_h[i], 1e-3);
|
|
}
|
|
}
|
|
|
|
TEST(GpuHist, ExternalMemory) {
|
|
constexpr size_t kRows = 4096;
|
|
constexpr size_t kCols = 2;
|
|
constexpr size_t kPageSize = 1024;
|
|
|
|
dmlc::TemporaryDirectory tmpdir;
|
|
|
|
// Create a DMatrix with multiple batches.
|
|
std::unique_ptr<DMatrix> dmat_ext(
|
|
CreateSparsePageDMatrix(kRows, kCols, kRows / kPageSize, tmpdir.path + "/cache"));
|
|
|
|
// Create a single batch DMatrix.
|
|
std::unique_ptr<DMatrix> dmat(CreateSparsePageDMatrix(kRows, kCols, 1, tmpdir.path + "/cache"));
|
|
|
|
auto gpair = GenerateRandomGradients(kRows);
|
|
|
|
// Build a tree using the in-memory DMatrix.
|
|
RegTree tree;
|
|
HostDeviceVector<bst_float> preds(kRows, 0.0, 0);
|
|
UpdateTree(&gpair, dmat.get(), 0, &tree, &preds, 1.0, "uniform", kRows);
|
|
// Build another tree using multiple ELLPACK pages.
|
|
RegTree tree_ext;
|
|
HostDeviceVector<bst_float> preds_ext(kRows, 0.0, 0);
|
|
UpdateTree(&gpair, dmat_ext.get(), kPageSize, &tree_ext, &preds_ext, 1.0, "uniform", kRows);
|
|
|
|
// Make sure the predictions are the same.
|
|
auto preds_h = preds.ConstHostVector();
|
|
auto preds_ext_h = preds_ext.ConstHostVector();
|
|
for (size_t i = 0; i < kRows; i++) {
|
|
EXPECT_NEAR(preds_h[i], preds_ext_h[i], 1e-6);
|
|
}
|
|
}
|
|
|
|
TEST(GpuHist, ExternalMemoryWithSampling) {
|
|
constexpr size_t kRows = 4096;
|
|
constexpr size_t kCols = 2;
|
|
constexpr size_t kPageSize = 1024;
|
|
constexpr float kSubsample = 0.5;
|
|
const std::string kSamplingMethod = "gradient_based";
|
|
common::GlobalRandom().seed(0);
|
|
|
|
dmlc::TemporaryDirectory tmpdir;
|
|
|
|
// Create a single batch DMatrix.
|
|
std::unique_ptr<DMatrix> dmat(CreateSparsePageDMatrix(kRows, kCols, 1, tmpdir.path + "/cache"));
|
|
|
|
// Create a DMatrix with multiple batches.
|
|
std::unique_ptr<DMatrix> dmat_ext(
|
|
CreateSparsePageDMatrix(kRows, kCols, kRows / kPageSize, tmpdir.path + "/cache"));
|
|
|
|
auto gpair = GenerateRandomGradients(kRows);
|
|
|
|
// Build a tree using the in-memory DMatrix.
|
|
auto rng = common::GlobalRandom();
|
|
|
|
RegTree tree;
|
|
HostDeviceVector<bst_float> preds(kRows, 0.0, 0);
|
|
UpdateTree(&gpair, dmat.get(), 0, &tree, &preds, kSubsample, kSamplingMethod,
|
|
kRows);
|
|
|
|
// Build another tree using multiple ELLPACK pages.
|
|
common::GlobalRandom() = rng;
|
|
RegTree tree_ext;
|
|
HostDeviceVector<bst_float> preds_ext(kRows, 0.0, 0);
|
|
UpdateTree(&gpair, dmat_ext.get(), kPageSize, &tree_ext, &preds_ext,
|
|
kSubsample, kSamplingMethod, kRows);
|
|
|
|
// Make sure the predictions are the same.
|
|
auto preds_h = preds.ConstHostVector();
|
|
auto preds_ext_h = preds_ext.ConstHostVector();
|
|
for (size_t i = 0; i < kRows; i++) {
|
|
ASSERT_NEAR(preds_h[i], preds_ext_h[i], 1e-3);
|
|
}
|
|
}
|
|
|
|
TEST(GpuHist, ConfigIO) {
|
|
GenericParameter generic_param(CreateEmptyGenericParam(0));
|
|
std::unique_ptr<TreeUpdater> updater{
|
|
TreeUpdater::Create("grow_gpu_hist", &generic_param, ObjInfo{ObjInfo::kRegression})};
|
|
updater->Configure(Args{});
|
|
|
|
Json j_updater { Object() };
|
|
updater->SaveConfig(&j_updater);
|
|
ASSERT_TRUE(IsA<Object>(j_updater["gpu_hist_train_param"]));
|
|
ASSERT_TRUE(IsA<Object>(j_updater["train_param"]));
|
|
updater->LoadConfig(j_updater);
|
|
|
|
Json j_updater_roundtrip { Object() };
|
|
updater->SaveConfig(&j_updater_roundtrip);
|
|
ASSERT_TRUE(IsA<Object>(j_updater_roundtrip["gpu_hist_train_param"]));
|
|
ASSERT_TRUE(IsA<Object>(j_updater_roundtrip["train_param"]));
|
|
|
|
ASSERT_EQ(j_updater, j_updater_roundtrip);
|
|
}
|
|
|
|
TEST(GpuHist, MaxDepth) {
|
|
GenericParameter generic_param(CreateEmptyGenericParam(0));
|
|
size_t constexpr kRows = 16;
|
|
size_t constexpr kCols = 4;
|
|
auto p_mat = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix();
|
|
|
|
auto learner = std::unique_ptr<Learner>(Learner::Create({p_mat}));
|
|
learner->SetParam("max_depth", "32");
|
|
learner->Configure();
|
|
|
|
ASSERT_THROW({learner->UpdateOneIter(0, p_mat);}, dmlc::Error);
|
|
}
|
|
} // namespace tree
|
|
} // namespace xgboost
|