100 lines
3.2 KiB
C++
100 lines
3.2 KiB
C++
/*!
|
|
* Copyright 2022 by XGBoost Contributors
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
#include <xgboost/data.h>
|
|
|
|
#include <algorithm> // next_permutation
|
|
#include <numeric> // iota
|
|
|
|
#include "../../../src/common/hist_util.h" // HistogramCuts,HistCollection
|
|
#include "../../../src/tree/param.h" // TrainParam
|
|
#include "../../../src/tree/split_evaluator.h"
|
|
#include "../helpers.h"
|
|
|
|
namespace xgboost {
|
|
namespace tree {
|
|
/**
|
|
* \brief Enumerate all possible partitions for categorical split.
|
|
*/
|
|
class TestPartitionBasedSplit : public ::testing::Test {
|
|
protected:
|
|
size_t n_bins_ = 6;
|
|
std::vector<size_t> sorted_idx_;
|
|
TrainParam param_;
|
|
MetaInfo info_;
|
|
float best_score_{-std::numeric_limits<float>::infinity()};
|
|
common::HistogramCuts cuts_;
|
|
common::HistCollection hist_;
|
|
GradientPairPrecise total_gpair_;
|
|
|
|
void SetUp() override {
|
|
param_.UpdateAllowUnknown(Args{{"min_child_weight", "0"}, {"reg_lambda", "0"}});
|
|
sorted_idx_.resize(n_bins_);
|
|
std::iota(sorted_idx_.begin(), sorted_idx_.end(), 0);
|
|
|
|
info_.num_col_ = 1;
|
|
|
|
cuts_.cut_ptrs_.Resize(2);
|
|
cuts_.SetCategorical(true, n_bins_);
|
|
auto &h_cuts = cuts_.cut_ptrs_.HostVector();
|
|
h_cuts[0] = 0;
|
|
h_cuts[1] = n_bins_;
|
|
auto &h_vals = cuts_.cut_values_.HostVector();
|
|
h_vals.resize(n_bins_);
|
|
std::iota(h_vals.begin(), h_vals.end(), 0.0);
|
|
|
|
hist_.Init(cuts_.TotalBins());
|
|
hist_.AddHistRow(0);
|
|
hist_.AllocateAllData();
|
|
auto node_hist = hist_[0];
|
|
|
|
SimpleLCG lcg;
|
|
SimpleRealUniformDistribution<double> grad_dist{-4.0, 4.0};
|
|
SimpleRealUniformDistribution<double> hess_dist{0.0, 4.0};
|
|
|
|
for (auto &e : node_hist) {
|
|
e = GradientPairPrecise{grad_dist(&lcg), hess_dist(&lcg)};
|
|
total_gpair_ += e;
|
|
}
|
|
|
|
auto enumerate = [this, n_feat = info_.num_col_](common::GHistRow hist,
|
|
GradientPairPrecise parent_sum) {
|
|
int32_t best_thresh = -1;
|
|
float best_score{-std::numeric_limits<float>::infinity()};
|
|
TreeEvaluator evaluator{param_, static_cast<bst_feature_t>(n_feat), -1};
|
|
auto tree_evaluator = evaluator.GetEvaluator<TrainParam>();
|
|
GradientPairPrecise left_sum;
|
|
auto parent_gain = tree_evaluator.CalcGain(0, param_, GradStats{total_gpair_});
|
|
for (size_t i = 0; i < hist.size() - 1; ++i) {
|
|
left_sum += hist[i];
|
|
auto right_sum = parent_sum - left_sum;
|
|
auto gain =
|
|
tree_evaluator.CalcSplitGain(param_, 0, 0, GradStats{left_sum}, GradStats{right_sum}) -
|
|
parent_gain;
|
|
if (gain > best_score) {
|
|
best_score = gain;
|
|
best_thresh = i;
|
|
}
|
|
}
|
|
return std::make_tuple(best_thresh, best_score);
|
|
};
|
|
|
|
// enumerate all possible partitions to find the optimal split
|
|
do {
|
|
int32_t thresh;
|
|
float score;
|
|
std::vector<GradientPairPrecise> sorted_hist(node_hist.size());
|
|
for (size_t i = 0; i < sorted_hist.size(); ++i) {
|
|
sorted_hist[i] = node_hist[sorted_idx_[i]];
|
|
}
|
|
std::tie(thresh, score) = enumerate({sorted_hist}, total_gpair_);
|
|
if (score > best_score_) {
|
|
best_score_ = score;
|
|
}
|
|
} while (std::next_permutation(sorted_idx_.begin(), sorted_idx_.end()));
|
|
}
|
|
};
|
|
} // namespace tree
|
|
} // namespace xgboost
|