xgboost/tests/cpp/predictor/test_gpu_predictor.cu
Jiaming Yuan 1a33b50a0d
Fix compiler warnings. (#7974)
- Remove unused parameters. There are still many warnings that are not yet
addressed. Currently, the warnings in dmlc-core dominate the error log.
- Remove `distributed` parameter from metric.
- Fixes some warnings about signed comparison.
2022-06-06 22:56:25 +08:00

285 lines
10 KiB
Plaintext

/*!
* Copyright 2017-2020 XGBoost contributors
*/
#include <dmlc/filesystem.h>
#include <gtest/gtest.h>
#include <xgboost/c_api.h>
#include <xgboost/learner.h>
#include <xgboost/logging.h>
#include <xgboost/predictor.h>
#include <string>
#include "../../../src/data/device_adapter.cuh"
#include "../../../src/data/proxy_dmatrix.h"
#include "../../../src/gbm/gbtree_model.h"
#include "../helpers.h"
#include "test_predictor.h"
namespace xgboost {
namespace predictor {
TEST(GPUPredictor, Basic) {
auto cpu_lparam = CreateEmptyGenericParam(-1);
auto gpu_lparam = CreateEmptyGenericParam(0);
std::unique_ptr<Predictor> gpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("gpu_predictor", &gpu_lparam));
std::unique_ptr<Predictor> cpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor", &cpu_lparam));
gpu_predictor->Configure({});
cpu_predictor->Configure({});
for (size_t i = 1; i < 33; i *= 2) {
int n_row = i, n_col = i;
auto dmat = RandomDataGenerator(n_row, n_col, 0).GenerateDMatrix();
LearnerModelParam param;
param.num_feature = n_col;
param.num_output_group = 1;
param.base_score = 0.5;
GenericParameter ctx;
ctx.UpdateAllowUnknown(Args{});
gbm::GBTreeModel model = CreateTestModel(&param, &ctx);
// Test predict batch
PredictionCacheEntry gpu_out_predictions;
PredictionCacheEntry cpu_out_predictions;
gpu_predictor->InitOutPredictions(dmat->Info(), &gpu_out_predictions.predictions, model);
gpu_predictor->PredictBatch(dmat.get(), &gpu_out_predictions, model, 0);
cpu_predictor->InitOutPredictions(dmat->Info(), &cpu_out_predictions.predictions, model);
cpu_predictor->PredictBatch(dmat.get(), &cpu_out_predictions, model, 0);
std::vector<float>& gpu_out_predictions_h = gpu_out_predictions.predictions.HostVector();
std::vector<float>& cpu_out_predictions_h = cpu_out_predictions.predictions.HostVector();
float abs_tolerance = 0.001;
for (int j = 0; j < gpu_out_predictions.predictions.Size(); j++) {
ASSERT_NEAR(gpu_out_predictions_h[j], cpu_out_predictions_h[j], abs_tolerance);
}
}
}
TEST(GPUPredictor, EllpackBasic) {
size_t constexpr kCols {8};
for (size_t bins = 2; bins < 258; bins += 16) {
size_t rows = bins * 16;
auto p_m = RandomDataGenerator{rows, kCols, 0.0}.Bins(bins).Device(0).GenerateDeviceDMatrix();
ASSERT_FALSE(p_m->PageExists<SparsePage>());
TestPredictionFromGradientIndex<EllpackPage>("gpu_predictor", rows, kCols, p_m);
TestPredictionFromGradientIndex<EllpackPage>("gpu_predictor", bins, kCols, p_m);
}
}
TEST(GPUPredictor, EllpackTraining) {
size_t constexpr kRows { 128 }, kCols { 16 }, kBins { 64 };
auto p_ellpack =
RandomDataGenerator{kRows, kCols, 0.0}.Bins(kBins).Device(0).GenerateDeviceDMatrix();
HostDeviceVector<float> storage(kRows * kCols);
auto columnar = RandomDataGenerator{kRows, kCols, 0.0}
.Device(0)
.GenerateArrayInterface(&storage);
auto adapter = data::CupyAdapter(columnar);
std::shared_ptr<DMatrix> p_full {
DMatrix::Create(&adapter, std::numeric_limits<float>::quiet_NaN(), 1)
};
TestTrainingPrediction(kRows, kBins, "gpu_hist", p_full, p_ellpack);
}
TEST(GPUPredictor, ExternalMemoryTest) {
auto lparam = CreateEmptyGenericParam(0);
std::unique_ptr<Predictor> gpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("gpu_predictor", &lparam));
gpu_predictor->Configure({});
LearnerModelParam param;
param.num_feature = 5;
const int n_classes = 3;
param.num_output_group = n_classes;
param.base_score = 0.5;
GenericParameter ctx;
ctx.UpdateAllowUnknown(Args{});
gbm::GBTreeModel model = CreateTestModel(&param, &ctx, n_classes);
std::vector<std::unique_ptr<DMatrix>> dmats;
dmats.push_back(CreateSparsePageDMatrix(400));
dmats.push_back(CreateSparsePageDMatrix(800));
dmats.push_back(CreateSparsePageDMatrix(8000));
for (const auto& dmat: dmats) {
dmat->Info().base_margin_ = decltype(dmat->Info().base_margin_){
{dmat->Info().num_row_, static_cast<size_t>(n_classes)}, 0};
dmat->Info().base_margin_.Data()->Fill(0.5);
PredictionCacheEntry out_predictions;
gpu_predictor->InitOutPredictions(dmat->Info(), &out_predictions.predictions, model);
gpu_predictor->PredictBatch(dmat.get(), &out_predictions, model, 0);
EXPECT_EQ(out_predictions.predictions.Size(), dmat->Info().num_row_ * n_classes);
const std::vector<float> &host_vector = out_predictions.predictions.ConstHostVector();
for (int i = 0; i < host_vector.size() / n_classes; i++) {
ASSERT_EQ(host_vector[i * n_classes], 2.0);
ASSERT_EQ(host_vector[i * n_classes + 1], 0.5);
ASSERT_EQ(host_vector[i * n_classes + 2], 0.5);
}
}
}
TEST(GPUPredictor, InplacePredictCupy) {
size_t constexpr kRows{128}, kCols{64};
RandomDataGenerator gen(kRows, kCols, 0.5);
gen.Device(0);
HostDeviceVector<float> data;
std::string interface_str = gen.GenerateArrayInterface(&data);
std::shared_ptr<DMatrix> p_fmat{new data::DMatrixProxy};
dynamic_cast<data::DMatrixProxy*>(p_fmat.get())->SetCUDAArray(interface_str.c_str());
TestInplacePrediction(p_fmat, "gpu_predictor", kRows, kCols, 0);
}
TEST(GPUPredictor, InplacePredictCuDF) {
size_t constexpr kRows{128}, kCols{64};
RandomDataGenerator gen(kRows, kCols, 0.5);
gen.Device(0);
std::vector<HostDeviceVector<float>> storage(kCols);
auto interface_str = gen.GenerateColumnarArrayInterface(&storage);
std::shared_ptr<DMatrix> p_fmat{new data::DMatrixProxy};
dynamic_cast<data::DMatrixProxy*>(p_fmat.get())->SetCUDAArray(interface_str.c_str());
TestInplacePrediction(p_fmat, "gpu_predictor", kRows, kCols, 0);
}
TEST(GPUPredictor, MGPU_InplacePredict) { // NOLINT
int32_t n_gpus = xgboost::common::AllVisibleGPUs();
if (n_gpus <= 1) {
LOG(WARNING) << "GPUPredictor.MGPU_InplacePredict is skipped.";
return;
}
size_t constexpr kRows{128}, kCols{64};
RandomDataGenerator gen(kRows, kCols, 0.5);
gen.Device(1);
HostDeviceVector<float> data;
std::string interface_str = gen.GenerateArrayInterface(&data);
std::shared_ptr<DMatrix> p_fmat{new data::DMatrixProxy};
dynamic_cast<data::DMatrixProxy*>(p_fmat.get())->SetCUDAArray(interface_str.c_str());
TestInplacePrediction(p_fmat, "gpu_predictor", kRows, kCols, 1);
EXPECT_THROW(TestInplacePrediction(p_fmat, "gpu_predictor", kRows, kCols, 0), dmlc::Error);
}
TEST(GpuPredictor, LesserFeatures) {
TestPredictionWithLesserFeatures("gpu_predictor");
}
// Very basic test of empty model
TEST(GPUPredictor, ShapStump) {
cudaSetDevice(0);
LearnerModelParam param;
param.num_feature = 1;
param.num_output_group = 1;
param.base_score = 0.5;
GenericParameter ctx;
ctx.UpdateAllowUnknown(Args{});
gbm::GBTreeModel model(&param, &ctx);
std::vector<std::unique_ptr<RegTree>> trees;
trees.push_back(std::unique_ptr<RegTree>(new RegTree));
model.CommitModel(std::move(trees), 0);
auto gpu_lparam = CreateEmptyGenericParam(0);
std::unique_ptr<Predictor> gpu_predictor = std::unique_ptr<Predictor>(
Predictor::Create("gpu_predictor", &gpu_lparam));
gpu_predictor->Configure({});
HostDeviceVector<float> predictions;
auto dmat = RandomDataGenerator(3, 1, 0).GenerateDMatrix();
gpu_predictor->PredictContribution(dmat.get(), &predictions, model);
auto& phis = predictions.HostVector();
EXPECT_EQ(phis[0], 0.0);
EXPECT_EQ(phis[1], param.base_score);
EXPECT_EQ(phis[2], 0.0);
EXPECT_EQ(phis[3], param.base_score);
EXPECT_EQ(phis[4], 0.0);
EXPECT_EQ(phis[5], param.base_score);
}
TEST(GPUPredictor, Shap) {
LearnerModelParam param;
param.num_feature = 1;
param.num_output_group = 1;
param.base_score = 0.5;
GenericParameter ctx;
ctx.UpdateAllowUnknown(Args{});
gbm::GBTreeModel model(&param, &ctx);
std::vector<std::unique_ptr<RegTree>> trees;
trees.push_back(std::unique_ptr<RegTree>(new RegTree));
trees[0]->ExpandNode(0, 0, 0.5, true, 1.0, -1.0, 1.0, 0.0, 5.0, 2.0, 3.0);
model.CommitModel(std::move(trees), 0);
auto gpu_lparam = CreateEmptyGenericParam(0);
auto cpu_lparam = CreateEmptyGenericParam(-1);
std::unique_ptr<Predictor> gpu_predictor = std::unique_ptr<Predictor>(
Predictor::Create("gpu_predictor", &gpu_lparam));
std::unique_ptr<Predictor> cpu_predictor = std::unique_ptr<Predictor>(
Predictor::Create("cpu_predictor", &cpu_lparam));
gpu_predictor->Configure({});
cpu_predictor->Configure({});
HostDeviceVector<float> predictions;
HostDeviceVector<float> cpu_predictions;
auto dmat = RandomDataGenerator(3, 1, 0).GenerateDMatrix();
gpu_predictor->PredictContribution(dmat.get(), &predictions, model);
cpu_predictor->PredictContribution(dmat.get(), &cpu_predictions, model);
auto& phis = predictions.HostVector();
auto& cpu_phis = cpu_predictions.HostVector();
for (auto i = 0ull; i < phis.size(); i++) {
EXPECT_NEAR(cpu_phis[i], phis[i], 1e-3);
}
}
TEST(GPUPredictor, IterationRange) {
TestIterationRange("gpu_predictor");
}
TEST(GPUPredictor, CategoricalPrediction) {
TestCategoricalPrediction("gpu_predictor");
}
TEST(GPUPredictor, CategoricalPredictLeaf) {
TestCategoricalPredictLeaf(StringView{"gpu_predictor"});
}
TEST(GPUPredictor, PredictLeafBasic) {
size_t constexpr kRows = 5, kCols = 5;
auto dmat = RandomDataGenerator(kRows, kCols, 0).Device(0).GenerateDMatrix();
auto lparam = CreateEmptyGenericParam(GPUIDX);
std::unique_ptr<Predictor> gpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("gpu_predictor", &lparam));
gpu_predictor->Configure({});
LearnerModelParam param;
param.num_feature = kCols;
param.base_score = 0.0;
param.num_output_group = 1;
GenericParameter ctx;
ctx.UpdateAllowUnknown(Args{});
gbm::GBTreeModel model = CreateTestModel(&param, &ctx);
HostDeviceVector<float> leaf_out_predictions;
gpu_predictor->PredictLeaf(dmat.get(), &leaf_out_predictions, model);
auto const& h_leaf_out_predictions = leaf_out_predictions.ConstHostVector();
for (auto v : h_leaf_out_predictions) {
ASSERT_EQ(v, 0);
}
}
TEST(GPUPredictor, Sparse) {
TestSparsePrediction(0.2, "gpu_predictor");
TestSparsePrediction(0.8, "gpu_predictor");
}
} // namespace predictor
} // namespace xgboost