Add unittest for prune. Add unittest for refresh. Refactor fast_hist. * Remove fast_hist_param. * Rename to quantile_hist. Add unittests for QuantileHist. * Refactor QuantileHist into .h and .cc file. * Remove sync.h. * Remove MGPU_mock test. Rename fast hist method to quantile hist.
268 lines
7.3 KiB
C++
268 lines
7.3 KiB
C++
/*!
|
|
* Copyright 2017 by Contributors
|
|
* \file hist_util.h
|
|
* \brief Utility for fast histogram aggregation
|
|
* \author Philip Cho, Tianqi Chen
|
|
*/
|
|
#ifndef XGBOOST_COMMON_HIST_UTIL_H_
|
|
#define XGBOOST_COMMON_HIST_UTIL_H_
|
|
|
|
#include <xgboost/data.h>
|
|
#include <limits>
|
|
#include <vector>
|
|
#include "row_set.h"
|
|
#include "../tree/param.h"
|
|
#include "./quantile.h"
|
|
|
|
namespace xgboost {
|
|
|
|
namespace common {
|
|
|
|
/*! \brief sums of gradient statistics corresponding to a histogram bin */
|
|
struct GHistEntry {
|
|
/*! \brief sum of first-order gradient statistics */
|
|
double sum_grad{0};
|
|
/*! \brief sum of second-order gradient statistics */
|
|
double sum_hess{0};
|
|
|
|
GHistEntry() = default;
|
|
|
|
inline void Clear() {
|
|
sum_grad = sum_hess = 0;
|
|
}
|
|
|
|
/*! \brief add a GradientPair to the sum */
|
|
inline void Add(const GradientPair& e) {
|
|
sum_grad += e.GetGrad();
|
|
sum_hess += e.GetHess();
|
|
}
|
|
|
|
/*! \brief add a GHistEntry to the sum */
|
|
inline void Add(const GHistEntry& e) {
|
|
sum_grad += e.sum_grad;
|
|
sum_hess += e.sum_hess;
|
|
}
|
|
|
|
/*! \brief set sum to be difference of two GHistEntry's */
|
|
inline void SetSubtract(const GHistEntry& a, const GHistEntry& b) {
|
|
sum_grad = a.sum_grad - b.sum_grad;
|
|
sum_hess = a.sum_hess - b.sum_hess;
|
|
}
|
|
};
|
|
|
|
/*! \brief Cut configuration for all the features. */
|
|
struct HistCutMatrix {
|
|
/*! \brief Unit pointer to rows by element position */
|
|
std::vector<uint32_t> row_ptr;
|
|
/*! \brief minimum value of each feature */
|
|
std::vector<bst_float> min_val;
|
|
/*! \brief the cut field */
|
|
std::vector<bst_float> cut;
|
|
uint32_t GetBinIdx(const Entry &e);
|
|
|
|
using WXQSketch = common::WXQuantileSketch<bst_float, bst_float>;
|
|
|
|
// create histogram cut matrix given statistics from data
|
|
// using approximate quantile sketch approach
|
|
void Init(DMatrix* p_fmat, uint32_t max_num_bins);
|
|
|
|
void Init(std::vector<WXQSketch>* sketchs, uint32_t max_num_bins);
|
|
};
|
|
|
|
/*! \brief Builds the cut matrix on the GPU */
|
|
void DeviceSketch
|
|
(const SparsePage& batch, const MetaInfo& info,
|
|
const tree::TrainParam& param, HistCutMatrix* hmat);
|
|
|
|
/*!
|
|
* \brief A single row in global histogram index.
|
|
* Directly represent the global index in the histogram entry.
|
|
*/
|
|
struct GHistIndexRow {
|
|
/*! \brief The index of the histogram */
|
|
const uint32_t* index;
|
|
/*! \brief The size of the histogram */
|
|
size_t size;
|
|
GHistIndexRow() = default;
|
|
GHistIndexRow(const uint32_t* index, size_t size)
|
|
: index(index), size(size) {}
|
|
};
|
|
|
|
/*!
|
|
* \brief preprocessed global index matrix, in CSR format
|
|
* Transform floating values to integer index in histogram
|
|
* This is a global histogram index.
|
|
*/
|
|
struct GHistIndexMatrix {
|
|
/*! \brief row pointer to rows by element position */
|
|
std::vector<size_t> row_ptr;
|
|
/*! \brief The index data */
|
|
std::vector<uint32_t> index;
|
|
/*! \brief hit count of each index */
|
|
std::vector<size_t> hit_count;
|
|
/*! \brief The corresponding cuts */
|
|
HistCutMatrix cut;
|
|
// Create a global histogram matrix, given cut
|
|
void Init(DMatrix* p_fmat, int max_num_bins);
|
|
// get i-th row
|
|
inline GHistIndexRow operator[](size_t i) const {
|
|
return {&index[0] + row_ptr[i], row_ptr[i + 1] - row_ptr[i]};
|
|
}
|
|
inline void GetFeatureCounts(size_t* counts) const {
|
|
auto nfeature = cut.row_ptr.size() - 1;
|
|
for (unsigned fid = 0; fid < nfeature; ++fid) {
|
|
auto ibegin = cut.row_ptr[fid];
|
|
auto iend = cut.row_ptr[fid + 1];
|
|
for (auto i = ibegin; i < iend; ++i) {
|
|
counts[fid] += hit_count[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::vector<size_t> hit_count_tloc_;
|
|
};
|
|
|
|
struct GHistIndexBlock {
|
|
const size_t* row_ptr;
|
|
const uint32_t* index;
|
|
|
|
inline GHistIndexBlock(const size_t* row_ptr, const uint32_t* index)
|
|
: row_ptr(row_ptr), index(index) {}
|
|
|
|
// get i-th row
|
|
inline GHistIndexRow operator[](size_t i) const {
|
|
return {&index[0] + row_ptr[i], row_ptr[i + 1] - row_ptr[i]};
|
|
}
|
|
};
|
|
|
|
class ColumnMatrix;
|
|
|
|
class GHistIndexBlockMatrix {
|
|
public:
|
|
void Init(const GHistIndexMatrix& gmat,
|
|
const ColumnMatrix& colmat,
|
|
const tree::TrainParam& param);
|
|
|
|
inline GHistIndexBlock operator[](size_t i) const {
|
|
return {blocks_[i].row_ptr_begin, blocks_[i].index_begin};
|
|
}
|
|
|
|
inline size_t GetNumBlock() const {
|
|
return blocks_.size();
|
|
}
|
|
|
|
private:
|
|
std::vector<size_t> row_ptr_;
|
|
std::vector<uint32_t> index_;
|
|
const HistCutMatrix* cut_;
|
|
struct Block {
|
|
const size_t* row_ptr_begin;
|
|
const size_t* row_ptr_end;
|
|
const uint32_t* index_begin;
|
|
const uint32_t* index_end;
|
|
};
|
|
std::vector<Block> blocks_;
|
|
};
|
|
|
|
/*!
|
|
* \brief histogram of graident statistics for a single node.
|
|
* Consists of multiple GHistEntry's, each entry showing total graident statistics
|
|
* for that particular bin
|
|
* Uses global bin id so as to represent all features simultaneously
|
|
*/
|
|
struct GHistRow {
|
|
/*! \brief base pointer to first entry */
|
|
GHistEntry* begin;
|
|
/*! \brief number of entries */
|
|
uint32_t size;
|
|
|
|
GHistRow() = default;
|
|
GHistRow(GHistEntry* begin, uint32_t size)
|
|
: begin(begin), size(size) {}
|
|
};
|
|
|
|
/*!
|
|
* \brief histogram of gradient statistics for multiple nodes
|
|
*/
|
|
class HistCollection {
|
|
public:
|
|
// access histogram for i-th node
|
|
inline GHistRow operator[](bst_uint nid) const {
|
|
constexpr uint32_t kMax = std::numeric_limits<uint32_t>::max();
|
|
CHECK_NE(row_ptr_[nid], kMax);
|
|
return {const_cast<GHistEntry*>(dmlc::BeginPtr(data_) + row_ptr_[nid]), nbins_};
|
|
}
|
|
|
|
// have we computed a histogram for i-th node?
|
|
inline bool RowExists(bst_uint nid) const {
|
|
const uint32_t k_max = std::numeric_limits<uint32_t>::max();
|
|
return (nid < row_ptr_.size() && row_ptr_[nid] != k_max);
|
|
}
|
|
|
|
// initialize histogram collection
|
|
inline void Init(uint32_t nbins) {
|
|
nbins_ = nbins;
|
|
row_ptr_.clear();
|
|
data_.clear();
|
|
}
|
|
|
|
// create an empty histogram for i-th node
|
|
inline void AddHistRow(bst_uint nid) {
|
|
constexpr uint32_t kMax = std::numeric_limits<uint32_t>::max();
|
|
if (nid >= row_ptr_.size()) {
|
|
row_ptr_.resize(nid + 1, kMax);
|
|
}
|
|
CHECK_EQ(row_ptr_[nid], kMax);
|
|
|
|
row_ptr_[nid] = data_.size();
|
|
data_.resize(data_.size() + nbins_);
|
|
}
|
|
|
|
private:
|
|
/*! \brief number of all bins over all features */
|
|
uint32_t nbins_;
|
|
|
|
std::vector<GHistEntry> data_;
|
|
|
|
/*! \brief row_ptr_[nid] locates bin for historgram of node nid */
|
|
std::vector<size_t> row_ptr_;
|
|
};
|
|
|
|
/*!
|
|
* \brief builder for histograms of gradient statistics
|
|
*/
|
|
class GHistBuilder {
|
|
public:
|
|
// initialize builder
|
|
inline void Init(size_t nthread, uint32_t nbins) {
|
|
nthread_ = nthread;
|
|
nbins_ = nbins;
|
|
}
|
|
|
|
// construct a histogram via histogram aggregation
|
|
void BuildHist(const std::vector<GradientPair>& gpair,
|
|
const RowSetCollection::Elem row_indices,
|
|
const GHistIndexMatrix& gmat,
|
|
GHistRow hist);
|
|
// same, with feature grouping
|
|
void BuildBlockHist(const std::vector<GradientPair>& gpair,
|
|
const RowSetCollection::Elem row_indices,
|
|
const GHistIndexBlockMatrix& gmatb,
|
|
GHistRow hist);
|
|
// construct a histogram via subtraction trick
|
|
void SubtractionTrick(GHistRow self, GHistRow sibling, GHistRow parent);
|
|
|
|
private:
|
|
/*! \brief number of threads for parallel computation */
|
|
size_t nthread_;
|
|
/*! \brief number of all bins over all features */
|
|
uint32_t nbins_;
|
|
std::vector<GHistEntry> data_;
|
|
};
|
|
|
|
|
|
} // namespace common
|
|
} // namespace xgboost
|
|
#endif // XGBOOST_COMMON_HIST_UTIL_H_
|