xgboost/src/common/hist_util.h
Jiaming Yuan 19ee0a3579
Refactor fast-hist, add tests for some updaters. (#3836)
Add unittest for prune.

Add unittest for refresh.

Refactor fast_hist.

* Remove fast_hist_param.
* Rename to quantile_hist.

Add unittests for QuantileHist.

* Refactor QuantileHist into .h and .cc file.
* Remove sync.h.
* Remove MGPU_mock test.

Rename fast hist method to quantile hist.
2018-11-07 21:15:07 +13:00

268 lines
7.3 KiB
C++

/*!
* Copyright 2017 by Contributors
* \file hist_util.h
* \brief Utility for fast histogram aggregation
* \author Philip Cho, Tianqi Chen
*/
#ifndef XGBOOST_COMMON_HIST_UTIL_H_
#define XGBOOST_COMMON_HIST_UTIL_H_
#include <xgboost/data.h>
#include <limits>
#include <vector>
#include "row_set.h"
#include "../tree/param.h"
#include "./quantile.h"
namespace xgboost {
namespace common {
/*! \brief sums of gradient statistics corresponding to a histogram bin */
struct GHistEntry {
/*! \brief sum of first-order gradient statistics */
double sum_grad{0};
/*! \brief sum of second-order gradient statistics */
double sum_hess{0};
GHistEntry() = default;
inline void Clear() {
sum_grad = sum_hess = 0;
}
/*! \brief add a GradientPair to the sum */
inline void Add(const GradientPair& e) {
sum_grad += e.GetGrad();
sum_hess += e.GetHess();
}
/*! \brief add a GHistEntry to the sum */
inline void Add(const GHistEntry& e) {
sum_grad += e.sum_grad;
sum_hess += e.sum_hess;
}
/*! \brief set sum to be difference of two GHistEntry's */
inline void SetSubtract(const GHistEntry& a, const GHistEntry& b) {
sum_grad = a.sum_grad - b.sum_grad;
sum_hess = a.sum_hess - b.sum_hess;
}
};
/*! \brief Cut configuration for all the features. */
struct HistCutMatrix {
/*! \brief Unit pointer to rows by element position */
std::vector<uint32_t> row_ptr;
/*! \brief minimum value of each feature */
std::vector<bst_float> min_val;
/*! \brief the cut field */
std::vector<bst_float> cut;
uint32_t GetBinIdx(const Entry &e);
using WXQSketch = common::WXQuantileSketch<bst_float, bst_float>;
// create histogram cut matrix given statistics from data
// using approximate quantile sketch approach
void Init(DMatrix* p_fmat, uint32_t max_num_bins);
void Init(std::vector<WXQSketch>* sketchs, uint32_t max_num_bins);
};
/*! \brief Builds the cut matrix on the GPU */
void DeviceSketch
(const SparsePage& batch, const MetaInfo& info,
const tree::TrainParam& param, HistCutMatrix* hmat);
/*!
* \brief A single row in global histogram index.
* Directly represent the global index in the histogram entry.
*/
struct GHistIndexRow {
/*! \brief The index of the histogram */
const uint32_t* index;
/*! \brief The size of the histogram */
size_t size;
GHistIndexRow() = default;
GHistIndexRow(const uint32_t* index, size_t size)
: index(index), size(size) {}
};
/*!
* \brief preprocessed global index matrix, in CSR format
* Transform floating values to integer index in histogram
* This is a global histogram index.
*/
struct GHistIndexMatrix {
/*! \brief row pointer to rows by element position */
std::vector<size_t> row_ptr;
/*! \brief The index data */
std::vector<uint32_t> index;
/*! \brief hit count of each index */
std::vector<size_t> hit_count;
/*! \brief The corresponding cuts */
HistCutMatrix cut;
// Create a global histogram matrix, given cut
void Init(DMatrix* p_fmat, int max_num_bins);
// get i-th row
inline GHistIndexRow operator[](size_t i) const {
return {&index[0] + row_ptr[i], row_ptr[i + 1] - row_ptr[i]};
}
inline void GetFeatureCounts(size_t* counts) const {
auto nfeature = cut.row_ptr.size() - 1;
for (unsigned fid = 0; fid < nfeature; ++fid) {
auto ibegin = cut.row_ptr[fid];
auto iend = cut.row_ptr[fid + 1];
for (auto i = ibegin; i < iend; ++i) {
counts[fid] += hit_count[i];
}
}
}
private:
std::vector<size_t> hit_count_tloc_;
};
struct GHistIndexBlock {
const size_t* row_ptr;
const uint32_t* index;
inline GHistIndexBlock(const size_t* row_ptr, const uint32_t* index)
: row_ptr(row_ptr), index(index) {}
// get i-th row
inline GHistIndexRow operator[](size_t i) const {
return {&index[0] + row_ptr[i], row_ptr[i + 1] - row_ptr[i]};
}
};
class ColumnMatrix;
class GHistIndexBlockMatrix {
public:
void Init(const GHistIndexMatrix& gmat,
const ColumnMatrix& colmat,
const tree::TrainParam& param);
inline GHistIndexBlock operator[](size_t i) const {
return {blocks_[i].row_ptr_begin, blocks_[i].index_begin};
}
inline size_t GetNumBlock() const {
return blocks_.size();
}
private:
std::vector<size_t> row_ptr_;
std::vector<uint32_t> index_;
const HistCutMatrix* cut_;
struct Block {
const size_t* row_ptr_begin;
const size_t* row_ptr_end;
const uint32_t* index_begin;
const uint32_t* index_end;
};
std::vector<Block> blocks_;
};
/*!
* \brief histogram of graident statistics for a single node.
* Consists of multiple GHistEntry's, each entry showing total graident statistics
* for that particular bin
* Uses global bin id so as to represent all features simultaneously
*/
struct GHistRow {
/*! \brief base pointer to first entry */
GHistEntry* begin;
/*! \brief number of entries */
uint32_t size;
GHistRow() = default;
GHistRow(GHistEntry* begin, uint32_t size)
: begin(begin), size(size) {}
};
/*!
* \brief histogram of gradient statistics for multiple nodes
*/
class HistCollection {
public:
// access histogram for i-th node
inline GHistRow operator[](bst_uint nid) const {
constexpr uint32_t kMax = std::numeric_limits<uint32_t>::max();
CHECK_NE(row_ptr_[nid], kMax);
return {const_cast<GHistEntry*>(dmlc::BeginPtr(data_) + row_ptr_[nid]), nbins_};
}
// have we computed a histogram for i-th node?
inline bool RowExists(bst_uint nid) const {
const uint32_t k_max = std::numeric_limits<uint32_t>::max();
return (nid < row_ptr_.size() && row_ptr_[nid] != k_max);
}
// initialize histogram collection
inline void Init(uint32_t nbins) {
nbins_ = nbins;
row_ptr_.clear();
data_.clear();
}
// create an empty histogram for i-th node
inline void AddHistRow(bst_uint nid) {
constexpr uint32_t kMax = std::numeric_limits<uint32_t>::max();
if (nid >= row_ptr_.size()) {
row_ptr_.resize(nid + 1, kMax);
}
CHECK_EQ(row_ptr_[nid], kMax);
row_ptr_[nid] = data_.size();
data_.resize(data_.size() + nbins_);
}
private:
/*! \brief number of all bins over all features */
uint32_t nbins_;
std::vector<GHistEntry> data_;
/*! \brief row_ptr_[nid] locates bin for historgram of node nid */
std::vector<size_t> row_ptr_;
};
/*!
* \brief builder for histograms of gradient statistics
*/
class GHistBuilder {
public:
// initialize builder
inline void Init(size_t nthread, uint32_t nbins) {
nthread_ = nthread;
nbins_ = nbins;
}
// construct a histogram via histogram aggregation
void BuildHist(const std::vector<GradientPair>& gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexMatrix& gmat,
GHistRow hist);
// same, with feature grouping
void BuildBlockHist(const std::vector<GradientPair>& gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexBlockMatrix& gmatb,
GHistRow hist);
// construct a histogram via subtraction trick
void SubtractionTrick(GHistRow self, GHistRow sibling, GHistRow parent);
private:
/*! \brief number of threads for parallel computation */
size_t nthread_;
/*! \brief number of all bins over all features */
uint32_t nbins_;
std::vector<GHistEntry> data_;
};
} // namespace common
} // namespace xgboost
#endif // XGBOOST_COMMON_HIST_UTIL_H_