xgboost/src/tree/updater_quantile_hist.h
Igor Rukhovich 19a2c54265
Prediction by indices (subsample < 1) (#6683)
* Another implementation of predicting by indices

* Fixed omp parallel_for variable type

* Removed SparsePageView from Updater
2021-03-16 15:08:20 +13:00

549 lines
20 KiB
C++

/*!
* Copyright 2017-2021 by Contributors
* \file updater_quantile_hist.h
* \brief use quantized feature values to construct a tree
* \author Philip Cho, Tianqi Chen, Egor Smirnov
*/
#ifndef XGBOOST_TREE_UPDATER_QUANTILE_HIST_H_
#define XGBOOST_TREE_UPDATER_QUANTILE_HIST_H_
#include <dmlc/timer.h>
#include <rabit/rabit.h>
#include <xgboost/tree_updater.h>
#include <iomanip>
#include <memory>
#include <queue>
#include <string>
#include <utility>
#include <vector>
#include "xgboost/data.h"
#include "xgboost/json.h"
#include "constraints.h"
#include "./param.h"
#include "./split_evaluator.h"
#include "../common/random.h"
#include "../common/timer.h"
#include "../common/hist_util.h"
#include "../common/row_set.h"
#include "../common/column_matrix.h"
namespace xgboost {
/*!
* \brief A C-style array with in-stack allocation. As long as the array is smaller than MaxStackSize, it will be allocated inside the stack. Otherwise, it will be heap-allocated.
*/
template<typename T, size_t MaxStackSize>
class MemStackAllocator {
public:
explicit MemStackAllocator(size_t required_size): required_size_(required_size) {
}
T* Get() {
if (!ptr_) {
if (MaxStackSize >= required_size_) {
ptr_ = stack_mem_;
} else {
ptr_ = reinterpret_cast<T*>(malloc(required_size_ * sizeof(T)));
do_free_ = true;
}
}
return ptr_;
}
~MemStackAllocator() {
if (do_free_) free(ptr_);
}
private:
T* ptr_ = nullptr;
bool do_free_ = false;
size_t required_size_;
T stack_mem_[MaxStackSize];
};
namespace tree {
using xgboost::common::GHistIndexMatrix;
using xgboost::common::GHistIndexBlockMatrix;
using xgboost::common::GHistIndexRow;
using xgboost::common::HistCollection;
using xgboost::common::RowSetCollection;
using xgboost::common::GHistRow;
using xgboost::common::GHistBuilder;
using xgboost::common::ColumnMatrix;
using xgboost::common::Column;
template <typename GradientSumT>
class HistSynchronizer;
template <typename GradientSumT>
class BatchHistSynchronizer;
template <typename GradientSumT>
class DistributedHistSynchronizer;
template <typename GradientSumT>
class HistRowsAdder;
template <typename GradientSumT>
class BatchHistRowsAdder;
template <typename GradientSumT>
class DistributedHistRowsAdder;
// training parameters specific to this algorithm
struct CPUHistMakerTrainParam
: public XGBoostParameter<CPUHistMakerTrainParam> {
bool single_precision_histogram = false;
// declare parameters
DMLC_DECLARE_PARAMETER(CPUHistMakerTrainParam) {
DMLC_DECLARE_FIELD(single_precision_histogram).set_default(false).describe(
"Use single precision to build histograms.");
}
};
/*! \brief construct a tree using quantized feature values */
class QuantileHistMaker: public TreeUpdater {
public:
QuantileHistMaker() {
updater_monitor_.Init("QuantileHistMaker");
}
void Configure(const Args& args) override;
void Update(HostDeviceVector<GradientPair>* gpair,
DMatrix* dmat,
const std::vector<RegTree*>& trees) override;
bool UpdatePredictionCache(const DMatrix* data,
HostDeviceVector<bst_float>* out_preds) override;
bool UpdatePredictionCacheMulticlass(const DMatrix* data,
HostDeviceVector<bst_float>* out_preds,
const int gid, const int ngroup) override;
void LoadConfig(Json const& in) override {
auto const& config = get<Object const>(in);
FromJson(config.at("train_param"), &this->param_);
try {
FromJson(config.at("cpu_hist_train_param"), &this->hist_maker_param_);
} catch (std::out_of_range&) {
// XGBoost model is from 1.1.x, so 'cpu_hist_train_param' is missing.
// We add this compatibility check because it's just recently that we (developers) began
// persuade R users away from using saveRDS() for model serialization. Hopefully, one day,
// everyone will be using xgb.save().
LOG(WARNING)
<< "Attempted to load internal configuration for a model file that was generated "
<< "by a previous version of XGBoost. A likely cause for this warning is that the model "
<< "was saved with saveRDS() in R or pickle.dump() in Python. We strongly ADVISE AGAINST "
<< "using saveRDS() or pickle.dump() so that the model remains accessible in current and "
<< "upcoming XGBoost releases. Please use xgb.save() instead to preserve models for the "
<< "long term. For more details and explanation, see "
<< "https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html";
this->hist_maker_param_.UpdateAllowUnknown(Args{});
}
}
void SaveConfig(Json* p_out) const override {
auto& out = *p_out;
out["train_param"] = ToJson(param_);
out["cpu_hist_train_param"] = ToJson(hist_maker_param_);
}
char const* Name() const override {
return "grow_quantile_histmaker";
}
protected:
template <typename GradientSumT>
friend class HistSynchronizer;
template <typename GradientSumT>
friend class BatchHistSynchronizer;
template <typename GradientSumT>
friend class DistributedHistSynchronizer;
template <typename GradientSumT>
friend class HistRowsAdder;
template <typename GradientSumT>
friend class BatchHistRowsAdder;
template <typename GradientSumT>
friend class DistributedHistRowsAdder;
CPUHistMakerTrainParam hist_maker_param_;
// training parameter
TrainParam param_;
// quantized data matrix
GHistIndexMatrix gmat_;
// (optional) data matrix with feature grouping
GHistIndexBlockMatrix gmatb_;
// column accessor
ColumnMatrix column_matrix_;
DMatrix const* p_last_dmat_ {nullptr};
bool is_gmat_initialized_ {false};
// data structure
struct NodeEntry {
/*! \brief statics for node entry */
GradStats stats;
/*! \brief loss of this node, without split */
bst_float root_gain;
/*! \brief weight calculated related to current data */
float weight;
/*! \brief current best solution */
SplitEntry best;
// constructor
explicit NodeEntry(const TrainParam&)
: root_gain(0.0f), weight(0.0f) {}
};
// actual builder that runs the algorithm
template<typename GradientSumT>
struct Builder {
public:
using GHistRowT = GHistRow<GradientSumT>;
using GradientPairT = xgboost::detail::GradientPairInternal<GradientSumT>;
// constructor
explicit Builder(const TrainParam& param,
std::unique_ptr<TreeUpdater> pruner,
FeatureInteractionConstraintHost int_constraints_,
DMatrix const* fmat)
: param_(param),
tree_evaluator_(param, fmat->Info().num_col_, GenericParameter::kCpuId),
pruner_(std::move(pruner)),
interaction_constraints_{std::move(int_constraints_)},
p_last_tree_(nullptr), p_last_fmat_(fmat) {
builder_monitor_.Init("Quantile::Builder");
}
// update one tree, growing
virtual void Update(const GHistIndexMatrix& gmat,
const GHistIndexBlockMatrix& gmatb,
const ColumnMatrix& column_matrix,
HostDeviceVector<GradientPair>* gpair,
DMatrix* p_fmat,
RegTree* p_tree);
inline void BuildHist(const std::vector<GradientPair>& gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexMatrix& gmat,
const GHistIndexBlockMatrix& gmatb,
GHistRowT hist) {
if (param_.enable_feature_grouping > 0) {
hist_builder_.BuildBlockHist(gpair, row_indices, gmatb, hist);
} else {
hist_builder_.BuildHist(gpair, row_indices, gmat, hist,
data_layout_ != DataLayout::kSparseData);
}
}
inline void SubtractionTrick(GHistRowT self,
GHistRowT sibling,
GHistRowT parent) {
builder_monitor_.Start("SubtractionTrick");
hist_builder_.SubtractionTrick(self, sibling, parent);
builder_monitor_.Stop("SubtractionTrick");
}
bool UpdatePredictionCache(const DMatrix* data,
HostDeviceVector<bst_float>* p_out_preds,
const int gid = 0, const int ngroup = 1);
void SetHistSynchronizer(HistSynchronizer<GradientSumT>* sync);
void SetHistRowsAdder(HistRowsAdder<GradientSumT>* adder);
protected:
friend class HistSynchronizer<GradientSumT>;
friend class BatchHistSynchronizer<GradientSumT>;
friend class DistributedHistSynchronizer<GradientSumT>;
friend class HistRowsAdder<GradientSumT>;
friend class BatchHistRowsAdder<GradientSumT>;
friend class DistributedHistRowsAdder<GradientSumT>;
/* tree growing policies */
struct ExpandEntry {
static const int kRootNid = 0;
static const int kEmptyNid = -1;
int nid;
int sibling_nid;
int depth;
bst_float loss_chg;
unsigned timestamp;
ExpandEntry(int nid, int sibling_nid, int depth, bst_float loss_chg,
unsigned tstmp)
: nid(nid), sibling_nid(sibling_nid), depth(depth),
loss_chg(loss_chg), timestamp(tstmp) {}
bool IsValid(TrainParam const &param, int32_t num_leaves) const {
bool ret = loss_chg <= kRtEps ||
(param.max_depth > 0 && this->depth == param.max_depth) ||
(param.max_leaves > 0 && num_leaves == param.max_leaves);
return ret;
}
};
// initialize temp data structure
void InitData(const GHistIndexMatrix& gmat,
const std::vector<GradientPair>& gpair,
const DMatrix& fmat,
const RegTree& tree);
void InitSampling(const std::vector<GradientPair>& gpair,
const DMatrix& fmat, std::vector<size_t>* row_indices);
void EvaluateSplits(const std::vector<ExpandEntry>& nodes_set,
const GHistIndexMatrix& gmat,
const HistCollection<GradientSumT>& hist,
const RegTree& tree);
void ApplySplit(std::vector<ExpandEntry> nodes,
const GHistIndexMatrix& gmat,
const ColumnMatrix& column_matrix,
const HistCollection<GradientSumT>& hist,
RegTree* p_tree);
template <typename BinIdxType>
void PartitionKernel(const size_t node_in_set, const size_t nid, common::Range1d range,
const int32_t split_cond,
const ColumnMatrix& column_matrix, const RegTree& tree);
void AddSplitsToRowSet(const std::vector<ExpandEntry>& nodes, RegTree* p_tree);
void FindSplitConditions(const std::vector<ExpandEntry>& nodes, const RegTree& tree,
const GHistIndexMatrix& gmat, std::vector<int32_t>* split_conditions);
void InitNewNode(int nid,
const GHistIndexMatrix& gmat,
const std::vector<GradientPair>& gpair,
const DMatrix& fmat,
const RegTree& tree);
// Enumerate the split values of specific feature
// Returns the sum of gradients corresponding to the data points that contains a non-missing
// value for the particular feature fid.
template <int d_step>
GradStats EnumerateSplit(
const GHistIndexMatrix &gmat, const GHistRowT &hist,
const NodeEntry &snode, SplitEntry *p_best, bst_uint fid,
bst_uint nodeID,
TreeEvaluator::SplitEvaluator<TrainParam> const &evaluator) const;
// if sum of statistics for non-missing values in the node
// is equal to sum of statistics for all values:
// then - there are no missing values
// else - there are missing values
bool SplitContainsMissingValues(const GradStats e, const NodeEntry& snode);
void ExpandWithDepthWise(const GHistIndexMatrix &gmat,
const GHistIndexBlockMatrix &gmatb,
const ColumnMatrix &column_matrix,
DMatrix *p_fmat,
RegTree *p_tree,
const std::vector<GradientPair> &gpair_h);
void BuildLocalHistograms(const GHistIndexMatrix &gmat,
const GHistIndexBlockMatrix &gmatb,
RegTree *p_tree,
const std::vector<GradientPair> &gpair_h);
void BuildHistogramsLossGuide(
ExpandEntry entry,
const GHistIndexMatrix &gmat,
const GHistIndexBlockMatrix &gmatb,
RegTree *p_tree,
const std::vector<GradientPair> &gpair_h);
// Split nodes to 2 sets depending on amount of rows in each node
// Histograms for small nodes will be built explicitly
// Histograms for big nodes will be built by 'Subtraction Trick'
void SplitSiblings(const std::vector<ExpandEntry>& nodes,
std::vector<ExpandEntry>* small_siblings,
std::vector<ExpandEntry>* big_siblings,
RegTree *p_tree);
void ParallelSubtractionHist(const common::BlockedSpace2d& space,
const std::vector<ExpandEntry>& nodes,
const RegTree * p_tree);
void BuildNodeStats(const GHistIndexMatrix &gmat,
DMatrix *p_fmat,
RegTree *p_tree,
const std::vector<GradientPair> &gpair_h);
void EvaluateAndApplySplits(const GHistIndexMatrix &gmat,
const ColumnMatrix &column_matrix,
RegTree *p_tree,
int *num_leaves,
int depth,
unsigned *timestamp,
std::vector<ExpandEntry> *temp_qexpand_depth);
void AddSplitsToTree(
const GHistIndexMatrix &gmat,
RegTree *p_tree,
int *num_leaves,
int depth,
unsigned *timestamp,
std::vector<ExpandEntry>* nodes_for_apply_split,
std::vector<ExpandEntry>* temp_qexpand_depth);
void ExpandWithLossGuide(const GHistIndexMatrix& gmat,
const GHistIndexBlockMatrix& gmatb,
const ColumnMatrix& column_matrix,
DMatrix* p_fmat,
RegTree* p_tree,
const std::vector<GradientPair>& gpair_h);
inline static bool LossGuide(ExpandEntry lhs, ExpandEntry rhs) {
if (lhs.loss_chg == rhs.loss_chg) {
return lhs.timestamp > rhs.timestamp; // favor small timestamp
} else {
return lhs.loss_chg < rhs.loss_chg; // favor large loss_chg
}
}
// --data fields--
const TrainParam& param_;
// number of omp thread used during training
int nthread_;
common::ColumnSampler column_sampler_;
// the internal row sets
RowSetCollection row_set_collection_;
// tree rows that were not used for current training
std::vector<size_t> unused_rows_;
// feature vectors for subsampled prediction
std::vector<RegTree::FVec> feat_vecs_;
// the temp space for split
std::vector<RowSetCollection::Split> row_split_tloc_;
std::vector<SplitEntry> best_split_tloc_;
/*! \brief TreeNode Data: statistics for each constructed node */
std::vector<NodeEntry> snode_;
/*! \brief culmulative histogram of gradients. */
HistCollection<GradientSumT> hist_;
/*! \brief culmulative local parent histogram of gradients. */
HistCollection<GradientSumT> hist_local_worker_;
TreeEvaluator tree_evaluator_;
/*! \brief feature with least # of bins. to be used for dense specialization
of InitNewNode() */
uint32_t fid_least_bins_;
GHistBuilder<GradientSumT> hist_builder_;
std::unique_ptr<TreeUpdater> pruner_;
FeatureInteractionConstraintHost interaction_constraints_;
static constexpr size_t kPartitionBlockSize = 2048;
common::PartitionBuilder<kPartitionBlockSize> partition_builder_;
// back pointers to tree and data matrix
const RegTree* p_last_tree_;
DMatrix const* const p_last_fmat_;
DMatrix* p_last_fmat_mutable_;
using ExpandQueue =
std::priority_queue<ExpandEntry, std::vector<ExpandEntry>,
std::function<bool(ExpandEntry, ExpandEntry)>>;
std::unique_ptr<ExpandQueue> qexpand_loss_guided_;
std::vector<ExpandEntry> qexpand_depth_wise_;
// key is the node id which should be calculated by Subtraction Trick, value is the node which
// provides the evidence for substracts
std::vector<ExpandEntry> nodes_for_subtraction_trick_;
// list of nodes whose histograms would be built explicitly.
std::vector<ExpandEntry> nodes_for_explicit_hist_build_;
enum class DataLayout { kDenseDataZeroBased, kDenseDataOneBased, kSparseData };
DataLayout data_layout_;
common::Monitor builder_monitor_;
common::ParallelGHistBuilder<GradientSumT> hist_buffer_;
rabit::Reducer<GradientPairT, GradientPairT::Reduce> histred_;
std::unique_ptr<HistSynchronizer<GradientSumT>> hist_synchronizer_;
std::unique_ptr<HistRowsAdder<GradientSumT>> hist_rows_adder_;
};
common::Monitor updater_monitor_;
template<typename GradientSumT>
void SetBuilder(std::unique_ptr<Builder<GradientSumT>>*, DMatrix *dmat);
template<typename GradientSumT>
void CallBuilderUpdate(const std::unique_ptr<Builder<GradientSumT>>& builder,
HostDeviceVector<GradientPair> *gpair,
DMatrix *dmat,
const std::vector<RegTree *> &trees);
protected:
std::unique_ptr<Builder<float>> float_builder_;
std::unique_ptr<Builder<double>> double_builder_;
std::unique_ptr<TreeUpdater> pruner_;
FeatureInteractionConstraintHost int_constraint_;
};
template <typename GradientSumT>
class HistSynchronizer {
public:
using BuilderT = QuantileHistMaker::Builder<GradientSumT>;
virtual void SyncHistograms(BuilderT* builder,
int starting_index,
int sync_count,
RegTree *p_tree) = 0;
virtual ~HistSynchronizer() = default;
};
template <typename GradientSumT>
class BatchHistSynchronizer: public HistSynchronizer<GradientSumT> {
public:
using BuilderT = QuantileHistMaker::Builder<GradientSumT>;
void SyncHistograms(BuilderT* builder,
int starting_index,
int sync_count,
RegTree *p_tree) override;
};
template <typename GradientSumT>
class DistributedHistSynchronizer: public HistSynchronizer<GradientSumT> {
public:
using BuilderT = QuantileHistMaker::Builder<GradientSumT>;
using ExpandEntryT = typename BuilderT::ExpandEntry;
void SyncHistograms(BuilderT* builder, int starting_index,
int sync_count, RegTree *p_tree) override;
void ParallelSubtractionHist(BuilderT* builder,
const common::BlockedSpace2d& space,
const std::vector<ExpandEntryT>& nodes,
const RegTree * p_tree);
};
template <typename GradientSumT>
class HistRowsAdder {
public:
using BuilderT = QuantileHistMaker::Builder<GradientSumT>;
virtual void AddHistRows(BuilderT* builder, int *starting_index,
int *sync_count, RegTree *p_tree) = 0;
virtual ~HistRowsAdder() = default;
};
template <typename GradientSumT>
class BatchHistRowsAdder: public HistRowsAdder<GradientSumT> {
public:
using BuilderT = QuantileHistMaker::Builder<GradientSumT>;
void AddHistRows(BuilderT*, int *starting_index,
int *sync_count, RegTree *p_tree) override;
};
template <typename GradientSumT>
class DistributedHistRowsAdder: public HistRowsAdder<GradientSumT> {
public:
using BuilderT = QuantileHistMaker::Builder<GradientSumT>;
void AddHistRows(BuilderT*, int *starting_index,
int *sync_count, RegTree *p_tree) override;
};
} // namespace tree
} // namespace xgboost
#endif // XGBOOST_TREE_UPDATER_QUANTILE_HIST_H_