xgboost/src/common/hist_util.h
2022-05-18 16:15:12 +08:00

645 lines
20 KiB
C++

/*!
* Copyright 2017-2022 by XGBoost Contributors
* \file hist_util.h
* \brief Utility for fast histogram aggregation
* \author Philip Cho, Tianqi Chen
*/
#ifndef XGBOOST_COMMON_HIST_UTIL_H_
#define XGBOOST_COMMON_HIST_UTIL_H_
#include <xgboost/data.h>
#include <xgboost/generic_parameters.h>
#include <limits>
#include <vector>
#include <algorithm>
#include <memory>
#include <utility>
#include <map>
#include "categorical.h"
#include "common.h"
#include "quantile.h"
#include "row_set.h"
#include "threading_utils.h"
#include "timer.h"
namespace xgboost {
class GHistIndexMatrix;
namespace common {
/*!
* \brief A single row in global histogram index.
* Directly represent the global index in the histogram entry.
*/
using GHistIndexRow = Span<uint32_t const>;
// A CSC matrix representing histogram cuts.
// The cut values represent upper bounds of bins containing approximately equal numbers of elements
class HistogramCuts {
bool has_categorical_{false};
float max_cat_{-1.0f};
protected:
void Swap(HistogramCuts&& that) noexcept(true) {
std::swap(cut_values_, that.cut_values_);
std::swap(cut_ptrs_, that.cut_ptrs_);
std::swap(min_vals_, that.min_vals_);
std::swap(has_categorical_, that.has_categorical_);
std::swap(max_cat_, that.max_cat_);
}
void Copy(HistogramCuts const& that) {
cut_values_.Resize(that.cut_values_.Size());
cut_ptrs_.Resize(that.cut_ptrs_.Size());
min_vals_.Resize(that.min_vals_.Size());
cut_values_.Copy(that.cut_values_);
cut_ptrs_.Copy(that.cut_ptrs_);
min_vals_.Copy(that.min_vals_);
has_categorical_ = that.has_categorical_;
max_cat_ = that.max_cat_;
}
public:
HostDeviceVector<float> cut_values_; // NOLINT
HostDeviceVector<uint32_t> cut_ptrs_; // NOLINT
// storing minimum value in a sketch set.
HostDeviceVector<float> min_vals_; // NOLINT
HistogramCuts();
HistogramCuts(HistogramCuts const& that) { this->Copy(that); }
HistogramCuts(HistogramCuts&& that) noexcept(true) {
this->Swap(std::forward<HistogramCuts>(that));
}
HistogramCuts& operator=(HistogramCuts const& that) {
this->Copy(that);
return *this;
}
HistogramCuts& operator=(HistogramCuts&& that) noexcept(true) {
this->Swap(std::forward<HistogramCuts>(that));
return *this;
}
uint32_t FeatureBins(bst_feature_t feature) const {
return cut_ptrs_.ConstHostVector().at(feature + 1) - cut_ptrs_.ConstHostVector()[feature];
}
std::vector<uint32_t> const& Ptrs() const { return cut_ptrs_.ConstHostVector(); }
std::vector<float> const& Values() const { return cut_values_.ConstHostVector(); }
std::vector<float> const& MinValues() const { return min_vals_.ConstHostVector(); }
bool HasCategorical() const { return has_categorical_; }
float MaxCategory() const { return max_cat_; }
/**
* \brief Set meta info about categorical features.
*
* \param has_cat Do we have categorical feature in the data?
* \param max_cat The maximum categorical value in all features.
*/
void SetCategorical(bool has_cat, float max_cat) {
has_categorical_ = has_cat;
max_cat_ = max_cat;
}
size_t TotalBins() const { return cut_ptrs_.ConstHostVector().back(); }
// Return the index of a cut point that is strictly greater than the input
// value, or the last available index if none exists
bst_bin_t SearchBin(float value, bst_feature_t column_id, std::vector<uint32_t> const& ptrs,
std::vector<float> const& values) const {
auto end = ptrs[column_id + 1];
auto beg = ptrs[column_id];
auto it = std::upper_bound(values.cbegin() + beg, values.cbegin() + end, value);
auto idx = it - values.cbegin();
idx -= !!(idx == end);
return idx;
}
bst_bin_t SearchBin(float value, bst_feature_t column_id) const {
return this->SearchBin(value, column_id, Ptrs(), Values());
}
/**
* \brief Search the bin index for numerical feature.
*/
bst_bin_t SearchBin(Entry const& e) const {
return SearchBin(e.fvalue, e.index);
}
/**
* \brief Search the bin index for categorical feature.
*/
bst_bin_t SearchCatBin(Entry const &e) const {
auto const &ptrs = this->Ptrs();
auto const &vals = this->Values();
auto end = ptrs.at(e.index + 1) + vals.cbegin();
auto beg = ptrs[e.index] + vals.cbegin();
// Truncates the value in case it's not perfectly rounded.
auto v = static_cast<float>(common::AsCat(e.fvalue));
auto bin_idx = std::lower_bound(beg, end, v) - vals.cbegin();
if (bin_idx == ptrs.at(e.index + 1)) {
bin_idx -= 1;
}
return bin_idx;
}
};
/**
* \brief Run CPU sketching on DMatrix.
*
* \param use_sorted Whether should we use SortedCSC for sketching, it's more efficient
* but consumes more memory.
*/
inline HistogramCuts SketchOnDMatrix(DMatrix* m, int32_t max_bins, int32_t n_threads,
bool use_sorted = false, Span<float> const hessian = {}) {
HistogramCuts out;
auto const& info = m->Info();
std::vector<std::vector<bst_row_t>> column_sizes(n_threads);
for (auto& column : column_sizes) {
column.resize(info.num_col_, 0);
}
std::vector<bst_row_t> reduced(info.num_col_, 0);
for (auto const& page : m->GetBatches<SparsePage>()) {
auto const& entries_per_column =
HostSketchContainer::CalcColumnSize(page, info.num_col_, n_threads);
for (size_t i = 0; i < entries_per_column.size(); ++i) {
reduced[i] += entries_per_column[i];
}
}
if (!use_sorted) {
HostSketchContainer container(max_bins, m->Info(), reduced, HostSketchContainer::UseGroup(info),
hessian, n_threads);
for (auto const& page : m->GetBatches<SparsePage>()) {
container.PushRowPage(page, info, hessian);
}
container.MakeCuts(&out);
} else {
SortedSketchContainer container{
max_bins, m->Info(), reduced, HostSketchContainer::UseGroup(info), hessian, n_threads};
for (auto const& page : m->GetBatches<SortedCSCPage>()) {
container.PushColPage(page, info, hessian);
}
container.MakeCuts(&out);
}
return out;
}
enum BinTypeSize : uint8_t {
kUint8BinsTypeSize = 1,
kUint16BinsTypeSize = 2,
kUint32BinsTypeSize = 4
};
/**
* \brief Dispatch for bin type, fn is a function that accepts a scalar of the bin type.
*/
template <typename Fn>
auto DispatchBinType(BinTypeSize type, Fn&& fn) {
switch (type) {
case kUint8BinsTypeSize: {
return fn(uint8_t{});
}
case kUint16BinsTypeSize: {
return fn(uint16_t{});
}
case kUint32BinsTypeSize: {
return fn(uint32_t{});
}
}
LOG(FATAL) << "Unreachable";
return fn(uint32_t{});
}
/**
* \brief Optionally compressed gradient index. The compression works only with dense
* data.
*
* The main body of construction code is in gradient_index.cc, this struct is only a
* storage class.
*/
struct Index {
Index() { SetBinTypeSize(binTypeSize_); }
Index(const Index& i) = delete;
Index& operator=(Index i) = delete;
Index(Index&& i) = delete;
Index& operator=(Index&& i) = delete;
uint32_t operator[](size_t i) const {
if (!bin_offset_.empty()) {
// dense, compressed
auto fidx = i % bin_offset_.size();
// restore the index by adding back its feature offset.
return func_(data_.data(), i) + bin_offset_[fidx];
} else {
return func_(data_.data(), i);
}
}
void SetBinTypeSize(BinTypeSize binTypeSize) {
binTypeSize_ = binTypeSize;
switch (binTypeSize) {
case kUint8BinsTypeSize:
func_ = &GetValueFromUint8;
break;
case kUint16BinsTypeSize:
func_ = &GetValueFromUint16;
break;
case kUint32BinsTypeSize:
func_ = &GetValueFromUint32;
break;
default:
CHECK(binTypeSize == kUint8BinsTypeSize || binTypeSize == kUint16BinsTypeSize ||
binTypeSize == kUint32BinsTypeSize);
}
}
BinTypeSize GetBinTypeSize() const {
return binTypeSize_;
}
template <typename T>
T const* data() const { // NOLINT
return reinterpret_cast<T const*>(data_.data());
}
template <typename T>
T* data() { // NOLINT
return reinterpret_cast<T*>(data_.data());
}
uint32_t const* Offset() const { return bin_offset_.data(); }
size_t OffsetSize() const { return bin_offset_.size(); }
size_t Size() const { return data_.size() / (binTypeSize_); }
void Resize(const size_t n_bytes) {
data_.resize(n_bytes);
}
// set the offset used in compression, cut_ptrs is the CSC indptr in HistogramCuts
void SetBinOffset(std::vector<uint32_t> const& cut_ptrs) {
bin_offset_.resize(cut_ptrs.size() - 1); // resize to number of features.
std::copy_n(cut_ptrs.begin(), bin_offset_.size(), bin_offset_.begin());
}
std::vector<uint8_t>::const_iterator begin() const { // NOLINT
return data_.begin();
}
std::vector<uint8_t>::const_iterator end() const { // NOLINT
return data_.end();
}
std::vector<uint8_t>::iterator begin() { // NOLINT
return data_.begin();
}
std::vector<uint8_t>::iterator end() { // NOLINT
return data_.end();
}
private:
// Functions to decompress the index.
static uint32_t GetValueFromUint8(uint8_t const* t, size_t i) { return t[i]; }
static uint32_t GetValueFromUint16(uint8_t const* t, size_t i) {
return reinterpret_cast<uint16_t const*>(t)[i];
}
static uint32_t GetValueFromUint32(uint8_t const* t, size_t i) {
return reinterpret_cast<uint32_t const*>(t)[i];
}
using Func = uint32_t (*)(uint8_t const*, size_t);
std::vector<uint8_t> data_;
// starting position of each feature inside the cut values (the indptr of the CSC cut matrix
// HistogramCuts without the last entry.) Used for bin compression.
std::vector<uint32_t> bin_offset_;
BinTypeSize binTypeSize_ {kUint8BinsTypeSize};
Func func_;
};
template <typename GradientIndex>
bst_bin_t XGBOOST_HOST_DEV_INLINE BinarySearchBin(size_t begin, size_t end,
GradientIndex const& data,
uint32_t const fidx_begin,
uint32_t const fidx_end) {
size_t previous_middle = std::numeric_limits<size_t>::max();
while (end != begin) {
size_t middle = begin + (end - begin) / 2;
if (middle == previous_middle) {
break;
}
previous_middle = middle;
// index into all the bins
auto gidx = data[middle];
if (gidx >= fidx_begin && gidx < fidx_end) {
// Found the intersection.
return static_cast<int32_t>(gidx);
} else if (gidx < fidx_begin) {
begin = middle;
} else {
end = middle;
}
}
// Value is missing
return -1;
}
using GHistRow = Span<xgboost::GradientPairPrecise>;
/*!
* \brief fill a histogram by zeros
*/
void InitilizeHistByZeroes(GHistRow hist, size_t begin, size_t end);
/*!
* \brief Increment hist as dst += add in range [begin, end)
*/
void IncrementHist(GHistRow dst, const GHistRow add, size_t begin, size_t end);
/*!
* \brief Copy hist from src to dst in range [begin, end)
*/
void CopyHist(GHistRow dst, const GHistRow src, size_t begin, size_t end);
/*!
* \brief Compute Subtraction: dst = src1 - src2 in range [begin, end)
*/
void SubtractionHist(GHistRow dst, const GHistRow src1, const GHistRow src2, size_t begin,
size_t end);
/*!
* \brief histogram of gradient statistics for multiple nodes
*/
class HistCollection {
public:
// access histogram for i-th node
GHistRow operator[](bst_uint nid) const {
constexpr uint32_t kMax = std::numeric_limits<uint32_t>::max();
const size_t id = row_ptr_.at(nid);
CHECK_NE(id, kMax);
GradientPairPrecise* ptr = nullptr;
if (contiguous_allocation_) {
ptr = const_cast<GradientPairPrecise*>(data_[0].data() + nbins_*id);
} else {
ptr = const_cast<GradientPairPrecise*>(data_[id].data());
}
return {ptr, nbins_};
}
// have we computed a histogram for i-th node?
bool RowExists(bst_uint nid) const {
const uint32_t k_max = std::numeric_limits<uint32_t>::max();
return (nid < row_ptr_.size() && row_ptr_[nid] != k_max);
}
// initialize histogram collection
void Init(uint32_t nbins) {
if (nbins_ != nbins) {
nbins_ = nbins;
// quite expensive operation, so let's do this only once
data_.clear();
}
row_ptr_.clear();
n_nodes_added_ = 0;
}
// create an empty histogram for i-th node
void AddHistRow(bst_uint nid) {
constexpr uint32_t kMax = std::numeric_limits<uint32_t>::max();
if (nid >= row_ptr_.size()) {
row_ptr_.resize(nid + 1, kMax);
}
CHECK_EQ(row_ptr_[nid], kMax);
if (data_.size() < (nid + 1)) {
data_.resize((nid + 1));
}
row_ptr_[nid] = n_nodes_added_;
n_nodes_added_++;
}
// allocate thread local memory i-th node
void AllocateData(bst_uint nid) {
if (data_[row_ptr_[nid]].size() == 0) {
data_[row_ptr_[nid]].resize(nbins_, {0, 0});
}
}
// allocate common buffer contiguously for all nodes, need for single Allreduce call
void AllocateAllData() {
const size_t new_size = nbins_*data_.size();
contiguous_allocation_ = true;
if (data_[0].size() != new_size) {
data_[0].resize(new_size);
}
}
private:
/*! \brief number of all bins over all features */
uint32_t nbins_ = 0;
/*! \brief amount of active nodes in hist collection */
uint32_t n_nodes_added_ = 0;
/*! \brief flag to identify contiguous memory allocation */
bool contiguous_allocation_ = false;
std::vector<std::vector<GradientPairPrecise>> data_;
/*! \brief row_ptr_[nid] locates bin for histogram of node nid */
std::vector<size_t> row_ptr_;
};
/*!
* \brief Stores temporary histograms to compute them in parallel
* Supports processing multiple tree-nodes for nested parallelism
* Able to reduce histograms across threads in efficient way
*/
class ParallelGHistBuilder {
public:
void Init(size_t nbins) {
if (nbins != nbins_) {
hist_buffer_.Init(nbins);
nbins_ = nbins;
}
}
// Add new elements if needed, mark all hists as unused
// targeted_hists - already allocated hists which should contain final results after Reduce() call
void Reset(size_t nthreads, size_t nodes, const BlockedSpace2d& space,
const std::vector<GHistRow>& targeted_hists) {
hist_buffer_.Init(nbins_);
tid_nid_to_hist_.clear();
threads_to_nids_map_.clear();
targeted_hists_ = targeted_hists;
CHECK_EQ(nodes, targeted_hists.size());
nodes_ = nodes;
nthreads_ = nthreads;
MatchThreadsToNodes(space);
AllocateAdditionalHistograms();
MatchNodeNidPairToHist();
hist_was_used_.resize(nthreads * nodes_);
std::fill(hist_was_used_.begin(), hist_was_used_.end(), static_cast<int>(false));
}
// Get specified hist, initialize hist by zeros if it wasn't used before
GHistRow GetInitializedHist(size_t tid, size_t nid) {
CHECK_LT(nid, nodes_);
CHECK_LT(tid, nthreads_);
int idx = tid_nid_to_hist_.at({tid, nid});
if (idx >= 0) {
hist_buffer_.AllocateData(idx);
}
GHistRow hist = idx == -1 ? targeted_hists_[nid] : hist_buffer_[idx];
if (!hist_was_used_[tid * nodes_ + nid]) {
InitilizeHistByZeroes(hist, 0, hist.size());
hist_was_used_[tid * nodes_ + nid] = static_cast<int>(true);
}
return hist;
}
// Reduce following bins (begin, end] for nid-node in dst across threads
void ReduceHist(size_t nid, size_t begin, size_t end) const {
CHECK_GT(end, begin);
CHECK_LT(nid, nodes_);
GHistRow dst = targeted_hists_[nid];
bool is_updated = false;
for (size_t tid = 0; tid < nthreads_; ++tid) {
if (hist_was_used_[tid * nodes_ + nid]) {
is_updated = true;
int idx = tid_nid_to_hist_.at({tid, nid});
GHistRow src = idx == -1 ? targeted_hists_[nid] : hist_buffer_[idx];
if (dst.data() != src.data()) {
IncrementHist(dst, src, begin, end);
}
}
}
if (!is_updated) {
// In distributed mode - some tree nodes can be empty on local machines,
// So we need just set local hist by zeros in this case
InitilizeHistByZeroes(dst, begin, end);
}
}
void MatchThreadsToNodes(const BlockedSpace2d& space) {
const size_t space_size = space.Size();
const size_t chunck_size = space_size / nthreads_ + !!(space_size % nthreads_);
threads_to_nids_map_.resize(nthreads_ * nodes_, false);
for (size_t tid = 0; tid < nthreads_; ++tid) {
size_t begin = chunck_size * tid;
size_t end = std::min(begin + chunck_size, space_size);
if (begin < space_size) {
size_t nid_begin = space.GetFirstDimension(begin);
size_t nid_end = space.GetFirstDimension(end-1);
for (size_t nid = nid_begin; nid <= nid_end; ++nid) {
// true - means thread 'tid' will work to compute partial hist for node 'nid'
threads_to_nids_map_[tid * nodes_ + nid] = true;
}
}
}
}
void AllocateAdditionalHistograms() {
size_t hist_allocated_additionally = 0;
for (size_t nid = 0; nid < nodes_; ++nid) {
int nthreads_for_nid = 0;
for (size_t tid = 0; tid < nthreads_; ++tid) {
if (threads_to_nids_map_[tid * nodes_ + nid]) {
nthreads_for_nid++;
}
}
// In distributed mode - some tree nodes can be empty on local machines,
// set nthreads_for_nid to 0 in this case.
// In another case - allocate additional (nthreads_for_nid - 1) histograms,
// because one is already allocated externally (will store final result for the node).
hist_allocated_additionally += std::max<int>(0, nthreads_for_nid - 1);
}
for (size_t i = 0; i < hist_allocated_additionally; ++i) {
hist_buffer_.AddHistRow(i);
}
}
private:
void MatchNodeNidPairToHist() {
size_t hist_allocated_additionally = 0;
for (size_t nid = 0; nid < nodes_; ++nid) {
bool first_hist = true;
for (size_t tid = 0; tid < nthreads_; ++tid) {
if (threads_to_nids_map_[tid * nodes_ + nid]) {
if (first_hist) {
tid_nid_to_hist_[{tid, nid}] = -1;
first_hist = false;
} else {
tid_nid_to_hist_[{tid, nid}] = hist_allocated_additionally++;
}
}
}
}
}
/*! \brief number of bins in each histogram */
size_t nbins_ = 0;
/*! \brief number of threads for parallel computation */
size_t nthreads_ = 0;
/*! \brief number of nodes which will be processed in parallel */
size_t nodes_ = 0;
/*! \brief Buffer for additional histograms for Parallel processing */
HistCollection hist_buffer_;
/*!
* \brief Marks which hists were used, it means that they should be merged.
* Contains only {true or false} values
* but 'int' is used instead of 'bool', because std::vector<bool> isn't thread safe
*/
std::vector<int> hist_was_used_;
/*! \brief Buffer for additional histograms for Parallel processing */
std::vector<bool> threads_to_nids_map_;
/*! \brief Contains histograms for final results */
std::vector<GHistRow> targeted_hists_;
/*!
* \brief map pair {tid, nid} to index of allocated histogram from hist_buffer_ and targeted_hists_,
* -1 is reserved for targeted_hists_
*/
std::map<std::pair<size_t, size_t>, int> tid_nid_to_hist_;
};
/*!
* \brief builder for histograms of gradient statistics
*/
class GHistBuilder {
public:
GHistBuilder() = default;
explicit GHistBuilder(uint32_t nbins): nbins_{nbins} {}
// construct a histogram via histogram aggregation
template <bool any_missing>
void BuildHist(const std::vector<GradientPair>& gpair, const RowSetCollection::Elem row_indices,
const GHistIndexMatrix& gmat, GHistRow hist) const;
uint32_t GetNumBins() const {
return nbins_;
}
private:
/*! \brief number of all bins over all features */
uint32_t nbins_ { 0 };
};
} // namespace common
} // namespace xgboost
#endif // XGBOOST_COMMON_HIST_UTIL_H_