xgboost/tests/cpp/tree/test_approx.cc
Jiaming Yuan 83a66b4994
Support categorical data for hist. (#7695)
* Extract partitioner from hist.
* Implement categorical data support by passing the gradient index directly into the partitioner.
* Organize/update document.
* Remove code for negative hessian.
2022-02-25 03:47:14 +08:00

68 lines
2.4 KiB
C++

/*!
* Copyright 2021-2022, XGBoost contributors.
*/
#include <gtest/gtest.h>
#include "../../../src/tree/updater_approx.h"
#include "../helpers.h"
#include "test_partitioner.h"
namespace xgboost {
namespace tree {
TEST(Approx, Partitioner) {
size_t n_samples = 1024, n_features = 1, base_rowid = 0;
ApproxRowPartitioner partitioner{n_samples, base_rowid};
ASSERT_EQ(partitioner.base_rowid, base_rowid);
ASSERT_EQ(partitioner.Size(), 1);
ASSERT_EQ(partitioner.Partitions()[0].Size(), n_samples);
auto Xy = RandomDataGenerator{n_samples, n_features, 0}.GenerateDMatrix(true);
GenericParameter ctx;
ctx.InitAllowUnknown(Args{});
std::vector<CPUExpandEntry> candidates{{0, 0, 0.4}};
auto grad = GenerateRandomGradients(n_samples);
std::vector<float> hess(grad.Size());
std::transform(grad.HostVector().cbegin(), grad.HostVector().cend(), hess.begin(),
[](auto gpair) { return gpair.GetHess(); });
for (auto const &page : Xy->GetBatches<GHistIndexMatrix>({64, hess, true})) {
bst_feature_t const split_ind = 0;
{
auto min_value = page.cut.MinValues()[split_ind];
RegTree tree;
ApproxRowPartitioner partitioner{n_samples, base_rowid};
GetSplit(&tree, min_value, &candidates);
partitioner.UpdatePosition(&ctx, page, candidates, &tree);
ASSERT_EQ(partitioner.Size(), 3);
ASSERT_EQ(partitioner[1].Size(), 0);
ASSERT_EQ(partitioner[2].Size(), n_samples);
}
{
ApproxRowPartitioner partitioner{n_samples, base_rowid};
auto ptr = page.cut.Ptrs()[split_ind + 1];
float split_value = page.cut.Values().at(ptr / 2);
RegTree tree;
GetSplit(&tree, split_value, &candidates);
auto left_nidx = tree[RegTree::kRoot].LeftChild();
partitioner.UpdatePosition(&ctx, page, candidates, &tree);
auto elem = partitioner[left_nidx];
ASSERT_LT(elem.Size(), n_samples);
ASSERT_GT(elem.Size(), 1);
for (auto it = elem.begin; it != elem.end; ++it) {
auto value = page.cut.Values().at(page.index[*it]);
ASSERT_LE(value, split_value);
}
auto right_nidx = tree[RegTree::kRoot].RightChild();
elem = partitioner[right_nidx];
for (auto it = elem.begin; it != elem.end; ++it) {
auto value = page.cut.Values().at(page.index[*it]);
ASSERT_GT(value, split_value) << *it;
}
}
}
}
} // namespace tree
} // namespace xgboost