* Change default metric for gamma regression to deviance. - Cleanup the gamma implementation. - Use deviance instead since the objective is derived from deviance.
125 lines
5.0 KiB
C++
125 lines
5.0 KiB
C++
/**
|
|
* Copyright 2017-2023 by XGBoost contributors
|
|
*/
|
|
#ifndef XGBOOST_OBJECTIVE_REGRESSION_LOSS_H_
|
|
#define XGBOOST_OBJECTIVE_REGRESSION_LOSS_H_
|
|
|
|
#include <dmlc/omp.h>
|
|
|
|
#include <cmath>
|
|
|
|
#include "../common/math.h"
|
|
#include "xgboost/data.h" // MetaInfo
|
|
#include "xgboost/logging.h"
|
|
#include "xgboost/task.h" // ObjInfo
|
|
|
|
namespace xgboost::obj {
|
|
// linear regression
|
|
struct LinearSquareLoss {
|
|
XGBOOST_DEVICE static bst_float PredTransform(bst_float x) { return x; }
|
|
XGBOOST_DEVICE static bool CheckLabel(bst_float) { return true; }
|
|
XGBOOST_DEVICE static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
|
|
return predt - label;
|
|
}
|
|
XGBOOST_DEVICE static bst_float SecondOrderGradient(bst_float, bst_float) { return 1.0f; }
|
|
static bst_float ProbToMargin(bst_float base_score) { return base_score; }
|
|
static const char* LabelErrorMsg() { return ""; }
|
|
static const char* DefaultEvalMetric() { return "rmse"; }
|
|
|
|
static const char* Name() { return "reg:squarederror"; }
|
|
static ObjInfo Info() { return {ObjInfo::kRegression, true, false}; }
|
|
};
|
|
|
|
struct SquaredLogError {
|
|
XGBOOST_DEVICE static bst_float PredTransform(bst_float x) { return x; }
|
|
XGBOOST_DEVICE static bool CheckLabel(bst_float label) { return label > -1; }
|
|
XGBOOST_DEVICE static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
|
|
predt = fmaxf(predt, -1 + 1e-6); // ensure correct value for log1p
|
|
return (std::log1p(predt) - std::log1p(label)) / (predt + 1);
|
|
}
|
|
XGBOOST_DEVICE static bst_float SecondOrderGradient(bst_float predt, bst_float label) {
|
|
predt = fmaxf(predt, -1 + 1e-6);
|
|
float res = (-std::log1p(predt) + std::log1p(label) + 1) / std::pow(predt + 1, 2);
|
|
res = fmaxf(res, 1e-6f);
|
|
return res;
|
|
}
|
|
static bst_float ProbToMargin(bst_float base_score) { return base_score; }
|
|
static const char* LabelErrorMsg() {
|
|
return "label must be greater than -1 for rmsle so that log(label + 1) can be valid.";
|
|
}
|
|
static const char* DefaultEvalMetric() { return "rmsle"; }
|
|
|
|
static const char* Name() { return "reg:squaredlogerror"; }
|
|
|
|
static ObjInfo Info() { return ObjInfo::kRegression; }
|
|
};
|
|
|
|
// logistic loss for probability regression task
|
|
struct LogisticRegression {
|
|
XGBOOST_DEVICE static bst_float PredTransform(bst_float x) { return common::Sigmoid(x); }
|
|
XGBOOST_DEVICE static bool CheckLabel(bst_float x) { return x >= 0.0f && x <= 1.0f; }
|
|
XGBOOST_DEVICE static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
|
|
return predt - label;
|
|
}
|
|
XGBOOST_DEVICE static bst_float SecondOrderGradient(bst_float predt, bst_float) {
|
|
const float eps = 1e-16f;
|
|
return fmaxf(predt * (1.0f - predt), eps);
|
|
}
|
|
static bst_float ProbToMargin(bst_float base_score) {
|
|
CHECK(base_score > 0.0f && base_score < 1.0f)
|
|
<< "base_score must be in (0,1) for logistic loss, got: " << base_score;
|
|
return -logf(1.0f / base_score - 1.0f);
|
|
}
|
|
static const char* LabelErrorMsg() { return "label must be in [0,1] for logistic regression"; }
|
|
static const char* DefaultEvalMetric() { return "rmse"; }
|
|
|
|
static const char* Name() { return "reg:logistic"; }
|
|
|
|
static ObjInfo Info() { return ObjInfo::kRegression; }
|
|
};
|
|
|
|
// logistic loss for binary classification task
|
|
struct LogisticClassification : public LogisticRegression {
|
|
static const char* DefaultEvalMetric() { return "logloss"; }
|
|
static const char* Name() { return "binary:logistic"; }
|
|
static ObjInfo Info() { return ObjInfo::kBinary; }
|
|
};
|
|
|
|
// logistic loss, but predict un-transformed margin
|
|
struct LogisticRaw : public LogisticRegression {
|
|
XGBOOST_DEVICE static bst_float PredTransform(bst_float x) { return x; }
|
|
XGBOOST_DEVICE static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
|
|
predt = common::Sigmoid(predt);
|
|
return predt - label;
|
|
}
|
|
XGBOOST_DEVICE static bst_float SecondOrderGradient(bst_float predt, bst_float) {
|
|
const float eps = 1e-16f;
|
|
predt = common::Sigmoid(predt);
|
|
return fmaxf(predt * (1.0f - predt), eps);
|
|
}
|
|
static bst_float ProbToMargin(bst_float base_score) { return base_score; }
|
|
static const char* DefaultEvalMetric() { return "logloss"; }
|
|
|
|
static const char* Name() { return "binary:logitraw"; }
|
|
|
|
static ObjInfo Info() { return ObjInfo::kRegression; }
|
|
};
|
|
|
|
// gamma deviance loss.
|
|
class GammaDeviance {
|
|
public:
|
|
XGBOOST_DEVICE static float PredTransform(float x) { return std::exp(x); }
|
|
XGBOOST_DEVICE static float ProbToMargin(float x) { return std::log(x); }
|
|
XGBOOST_DEVICE static float FirstOrderGradient(float p, float y) {
|
|
return 1.0f - y / p;
|
|
}
|
|
XGBOOST_DEVICE static float SecondOrderGradient(float p, float y) { return y / p; }
|
|
static ObjInfo Info() { return ObjInfo::kRegression; }
|
|
static const char* Name() { return "reg:gamma"; }
|
|
static const char* DefaultEvalMetric() { return "gamma-deviance"; }
|
|
XGBOOST_DEVICE static bool CheckLabel(float x) { return x > 0.0f; }
|
|
static const char* LabelErrorMsg() { return "label must be positive for gamma regression."; }
|
|
};
|
|
} // namespace xgboost::obj
|
|
#endif // XGBOOST_OBJECTIVE_REGRESSION_LOSS_H_
|