xgboost/tests/cpp/test_learner.cc

682 lines
22 KiB
C++

/*!
* Copyright 2017-2023 by XGBoost contributors
*/
#include <gtest/gtest.h>
#include <xgboost/learner.h>
#include <xgboost/objective.h> // ObjFunction
#include <xgboost/version_config.h>
#include <string> // std::stof, std::string
#include <thread>
#include <vector>
#include "../../src/common/api_entry.h" // XGBAPIThreadLocalEntry
#include "../../src/common/io.h"
#include "../../src/common/linalg_op.h"
#include "../../src/common/random.h"
#include "filesystem.h" // dmlc::TemporaryDirectory
#include "helpers.h"
#include "xgboost/json.h"
namespace xgboost {
TEST(Learner, Basic) {
using Arg = std::pair<std::string, std::string>;
auto args = {Arg("tree_method", "exact")};
auto mat_ptr = RandomDataGenerator{10, 10, 0.0f}.GenerateDMatrix();
auto learner = std::unique_ptr<Learner>(Learner::Create({mat_ptr}));
learner->SetParams(args);
auto major = XGBOOST_VER_MAJOR;
auto minor = XGBOOST_VER_MINOR;
auto patch = XGBOOST_VER_PATCH;
static_assert(std::is_integral<decltype(major)>::value, "Wrong major version type");
static_assert(std::is_integral<decltype(minor)>::value, "Wrong minor version type");
static_assert(std::is_integral<decltype(patch)>::value, "Wrong patch version type");
}
TEST(Learner, ParameterValidation) {
ConsoleLogger::Configure({{"verbosity", "2"}});
size_t constexpr kRows = 1;
size_t constexpr kCols = 1;
auto p_mat = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix();
auto learner = std::unique_ptr<Learner>(Learner::Create({p_mat}));
learner->SetParam("validate_parameters", "1");
learner->SetParam("Knock-Knock", "Who's-there?");
learner->SetParam("Silence", "....");
learner->SetParam("tree_method", "exact");
testing::internal::CaptureStderr();
learner->Configure();
std::string output = testing::internal::GetCapturedStderr();
ASSERT_TRUE(output.find(R"(Parameters: { "Knock-Knock", "Silence" })") != std::string::npos);
// whitespace
learner->SetParam("tree method", "exact");
EXPECT_THROW(learner->Configure(), dmlc::Error);
}
TEST(Learner, CheckGroup) {
using Arg = std::pair<std::string, std::string>;
size_t constexpr kNumGroups = 4;
size_t constexpr kNumRows = 17;
bst_feature_t constexpr kNumCols = 15;
std::shared_ptr<DMatrix> p_mat{
RandomDataGenerator{kNumRows, kNumCols, 0.0f}.GenerateDMatrix()};
std::vector<bst_float> weight(kNumGroups, 1);
std::vector<bst_int> group(kNumGroups);
group[0] = 2;
group[1] = 3;
group[2] = 7;
group[3] = 5;
std::vector<bst_float> labels (kNumRows);
for (size_t i = 0; i < kNumRows; ++i) {
labels[i] = i % 2;
}
p_mat->SetInfo("weight", static_cast<void *>(weight.data()), DataType::kFloat32, kNumGroups);
p_mat->SetInfo("group", group.data(), DataType::kUInt32, kNumGroups);
p_mat->SetInfo("label", labels.data(), DataType::kFloat32, kNumRows);
std::vector<std::shared_ptr<xgboost::DMatrix>> mat = {p_mat};
auto learner = std::unique_ptr<Learner>(Learner::Create(mat));
learner->SetParams({Arg{"objective", "rank:pairwise"}});
EXPECT_NO_THROW(learner->UpdateOneIter(0, p_mat));
group.resize(kNumGroups+1);
group[3] = 4;
group[4] = 1;
p_mat->SetInfo("group", group.data(), DataType::kUInt32, kNumGroups+1);
EXPECT_ANY_THROW(learner->UpdateOneIter(0, p_mat));
}
TEST(Learner, SLOW_CheckMultiBatch) { // NOLINT
// Create sufficiently large data to make two row pages
dmlc::TemporaryDirectory tempdir;
const std::string tmp_file = tempdir.path + "/big.libsvm";
CreateBigTestData(tmp_file, 50000);
std::shared_ptr<DMatrix> dmat(xgboost::DMatrix::Load(tmp_file + "#" + tmp_file + ".cache"));
EXPECT_FALSE(dmat->SingleColBlock());
size_t num_row = dmat->Info().num_row_;
std::vector<bst_float> labels(num_row);
for (size_t i = 0; i < num_row; ++i) {
labels[i] = i % 2;
}
dmat->SetInfo("label", labels.data(), DataType::kFloat32, num_row);
std::vector<std::shared_ptr<DMatrix>> mat{dmat};
auto learner = std::unique_ptr<Learner>(Learner::Create(mat));
learner->SetParams(Args{{"objective", "binary:logistic"}});
learner->UpdateOneIter(0, dmat);
}
TEST(Learner, Configuration) {
std::string const emetric = "eval_metric";
{
std::unique_ptr<Learner> learner { Learner::Create({nullptr}) };
learner->SetParam(emetric, "auc");
learner->SetParam(emetric, "rmsle");
learner->SetParam("foo", "bar");
// eval_metric is not part of configuration
auto attr_names = learner->GetConfigurationArguments();
ASSERT_EQ(attr_names.size(), 1ul);
ASSERT_EQ(attr_names.find(emetric), attr_names.cend());
ASSERT_EQ(attr_names.at("foo"), "bar");
}
{
std::unique_ptr<Learner> learner { Learner::Create({nullptr}) };
learner->SetParams({{"foo", "bar"}, {emetric, "auc"}, {emetric, "entropy"}, {emetric, "KL"}});
auto attr_names = learner->GetConfigurationArguments();
ASSERT_EQ(attr_names.size(), 1ul);
ASSERT_EQ(attr_names.at("foo"), "bar");
}
}
TEST(Learner, JsonModelIO) {
// Test of comparing JSON object directly.
size_t constexpr kRows = 8;
int32_t constexpr kIters = 4;
std::shared_ptr<DMatrix> p_dmat{RandomDataGenerator{kRows, 10, 0}.GenerateDMatrix()};
p_dmat->Info().labels.Reshape(kRows);
CHECK_NE(p_dmat->Info().num_col_, 0);
{
std::unique_ptr<Learner> learner { Learner::Create({p_dmat}) };
learner->Configure();
Json out { Object() };
learner->SaveModel(&out);
dmlc::TemporaryDirectory tmpdir;
std::ofstream fout (tmpdir.path + "/model.json");
fout << out;
fout.close();
auto loaded_str = common::LoadSequentialFile(tmpdir.path + "/model.json");
Json loaded = Json::Load(StringView{loaded_str.c_str(), loaded_str.size()});
learner->LoadModel(loaded);
learner->Configure();
Json new_in { Object() };
learner->SaveModel(&new_in);
ASSERT_EQ(new_in, out);
}
{
std::unique_ptr<Learner> learner { Learner::Create({p_dmat}) };
for (int32_t iter = 0; iter < kIters; ++iter) {
learner->UpdateOneIter(iter, p_dmat);
}
learner->SetAttr("best_score", "15.2");
Json out { Object() };
learner->SaveModel(&out);
learner->LoadModel(out);
Json new_in { Object() };
learner->Configure();
learner->SaveModel(&new_in);
ASSERT_TRUE(IsA<Object>(out["learner"]["attributes"]));
ASSERT_EQ(get<Object>(out["learner"]["attributes"]).size(), 1ul);
ASSERT_EQ(out, new_in);
}
}
// Crashes the test runner if there are race condiditions.
//
// Build with additional cmake flags to enable thread sanitizer
// which definitely catches problems. Note that OpenMP needs to be
// disabled, otherwise thread sanitizer will also report false
// positives.
//
// ```
// -DUSE_SANITIZER=ON -DENABLED_SANITIZERS=thread -DUSE_OPENMP=OFF
// ```
TEST(Learner, MultiThreadedPredict) {
size_t constexpr kRows = 1000;
size_t constexpr kCols = 100;
std::shared_ptr<DMatrix> p_dmat{RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix()};
p_dmat->Info().labels.Reshape(kRows);
CHECK_NE(p_dmat->Info().num_col_, 0);
std::shared_ptr<DMatrix> p_data{RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix()};
CHECK_NE(p_data->Info().num_col_, 0);
std::shared_ptr<Learner> learner{Learner::Create({p_dmat})};
learner->Configure();
std::vector<std::thread> threads;
for (uint32_t thread_id = 0;
thread_id < 2 * std::thread::hardware_concurrency(); ++thread_id) {
threads.emplace_back([learner, p_data] {
size_t constexpr kIters = 10;
auto &entry = learner->GetThreadLocal().prediction_entry;
HostDeviceVector<float> predictions;
for (size_t iter = 0; iter < kIters; ++iter) {
learner->Predict(p_data, false, &entry.predictions, 0, 0);
learner->Predict(p_data, false, &predictions, 0, 0, false, true); // leaf
learner->Predict(p_data, false, &predictions, 0, 0, false, false, true); // contribs
}
});
}
for (auto &thread : threads) {
thread.join();
}
}
TEST(Learner, BinaryModelIO) {
size_t constexpr kRows = 8;
int32_t constexpr kIters = 4;
auto p_dmat = RandomDataGenerator{kRows, 10, 0}.GenerateDMatrix();
p_dmat->Info().labels.Reshape(kRows);
std::unique_ptr<Learner> learner{Learner::Create({p_dmat})};
learner->SetParam("eval_metric", "rmsle");
learner->Configure();
for (int32_t iter = 0; iter < kIters; ++iter) {
learner->UpdateOneIter(iter, p_dmat);
}
dmlc::TemporaryDirectory tempdir;
std::string const fname = tempdir.path + "binary_model_io.bin";
{
// Make sure the write is complete before loading.
std::unique_ptr<dmlc::Stream> fo(dmlc::Stream::Create(fname.c_str(), "w"));
learner->SaveModel(fo.get());
}
learner.reset(Learner::Create({p_dmat}));
std::unique_ptr<dmlc::Stream> fi(dmlc::Stream::Create(fname.c_str(), "r"));
learner->LoadModel(fi.get());
learner->Configure();
Json config { Object() };
learner->SaveConfig(&config);
std::string config_str;
Json::Dump(config, &config_str);
ASSERT_NE(config_str.find("rmsle"), std::string::npos);
ASSERT_EQ(config_str.find("WARNING"), std::string::npos);
}
#if defined(XGBOOST_USE_CUDA)
// Tests for automatic GPU configuration.
TEST(Learner, GPUConfiguration) {
using Arg = std::pair<std::string, std::string>;
size_t constexpr kRows = 10;
auto p_dmat = RandomDataGenerator(kRows, 10, 0).GenerateDMatrix();
std::vector<std::shared_ptr<DMatrix>> mat {p_dmat};
std::vector<bst_float> labels(kRows);
for (size_t i = 0; i < labels.size(); ++i) {
labels[i] = i;
}
p_dmat->Info().labels.Data()->HostVector() = labels;
p_dmat->Info().labels.Reshape(kRows);
{
std::unique_ptr<Learner> learner {Learner::Create(mat)};
learner->SetParams({Arg{"booster", "gblinear"},
Arg{"updater", "gpu_coord_descent"}});
learner->UpdateOneIter(0, p_dmat);
ASSERT_EQ(learner->Ctx()->gpu_id, 0);
}
{
std::unique_ptr<Learner> learner {Learner::Create(mat)};
learner->SetParams({Arg{"tree_method", "gpu_hist"}});
learner->UpdateOneIter(0, p_dmat);
ASSERT_EQ(learner->Ctx()->gpu_id, 0);
}
{
std::unique_ptr<Learner> learner {Learner::Create(mat)};
learner->SetParams({Arg{"tree_method", "gpu_hist"},
Arg{"gpu_id", "-1"}});
learner->UpdateOneIter(0, p_dmat);
ASSERT_EQ(learner->Ctx()->gpu_id, 0);
}
{
// with CPU algorithm
std::unique_ptr<Learner> learner {Learner::Create(mat)};
learner->SetParams({Arg{"tree_method", "hist"}});
learner->UpdateOneIter(0, p_dmat);
ASSERT_EQ(learner->Ctx()->gpu_id, -1);
}
{
// with CPU algorithm, but `gpu_id` takes priority
std::unique_ptr<Learner> learner {Learner::Create(mat)};
learner->SetParams({Arg{"tree_method", "hist"},
Arg{"gpu_id", "0"}});
learner->UpdateOneIter(0, p_dmat);
ASSERT_EQ(learner->Ctx()->gpu_id, 0);
}
{
// With CPU algorithm but GPU Predictor, this is to simulate when
// XGBoost is only used for prediction, so tree method is not
// specified.
std::unique_ptr<Learner> learner {Learner::Create(mat)};
learner->SetParams({Arg{"tree_method", "hist"},
Arg{"predictor", "gpu_predictor"}});
learner->UpdateOneIter(0, p_dmat);
ASSERT_EQ(learner->Ctx()->gpu_id, 0);
}
}
#endif // defined(XGBOOST_USE_CUDA)
TEST(Learner, Seed) {
auto m = RandomDataGenerator{10, 10, 0}.GenerateDMatrix();
std::unique_ptr<Learner> learner {
Learner::Create({m})
};
auto seed = std::numeric_limits<int64_t>::max();
learner->SetParam("seed", std::to_string(seed));
learner->Configure();
Json config { Object() };
learner->SaveConfig(&config);
ASSERT_EQ(std::to_string(seed),
get<String>(config["learner"]["generic_param"]["seed"]));
seed = std::numeric_limits<int64_t>::min();
learner->SetParam("seed", std::to_string(seed));
learner->Configure();
learner->SaveConfig(&config);
ASSERT_EQ(std::to_string(seed),
get<String>(config["learner"]["generic_param"]["seed"]));
}
TEST(Learner, ConstantSeed) {
auto m = RandomDataGenerator{10, 10, 0}.GenerateDMatrix(true);
std::unique_ptr<Learner> learner{Learner::Create({m})};
learner->Configure(); // seed the global random
std::uniform_real_distribution<float> dist;
auto& rng = common::GlobalRandom();
float v_0 = dist(rng);
learner->SetParam("", "");
learner->Configure(); // check configure doesn't change the seed.
float v_1 = dist(rng);
CHECK_NE(v_0, v_1);
{
rng.seed(Context::kDefaultSeed);
std::uniform_real_distribution<float> dist;
float v_2 = dist(rng);
CHECK_EQ(v_0, v_2);
}
}
TEST(Learner, FeatureInfo) {
size_t constexpr kCols = 10;
auto m = RandomDataGenerator{10, kCols, 0}.GenerateDMatrix(true);
std::vector<std::string> names(kCols);
for (size_t i = 0; i < kCols; ++i) {
names[i] = ("f" + std::to_string(i));
}
std::vector<std::string> types(kCols);
for (size_t i = 0; i < kCols; ++i) {
types[i] = "q";
}
types[8] = "f";
types[0] = "int";
types[3] = "i";
types[7] = "i";
std::vector<char const*> c_names(kCols);
for (size_t i = 0; i < names.size(); ++i) {
c_names[i] = names[i].c_str();
}
std::vector<char const*> c_types(kCols);
for (size_t i = 0; i < types.size(); ++i) {
c_types[i] = names[i].c_str();
}
std::vector<std::string> out_names;
std::vector<std::string> out_types;
Json model{Object()};
{
std::unique_ptr<Learner> learner{Learner::Create({m})};
learner->Configure();
learner->SetFeatureNames(names);
learner->GetFeatureNames(&out_names);
learner->SetFeatureTypes(types);
learner->GetFeatureTypes(&out_types);
ASSERT_TRUE(std::equal(out_names.begin(), out_names.end(), names.begin()));
ASSERT_TRUE(std::equal(out_types.begin(), out_types.end(), types.begin()));
learner->SaveModel(&model);
}
{
std::unique_ptr<Learner> learner{Learner::Create({m})};
learner->LoadModel(model);
learner->GetFeatureNames(&out_names);
learner->GetFeatureTypes(&out_types);
ASSERT_TRUE(std::equal(out_names.begin(), out_names.end(), names.begin()));
ASSERT_TRUE(std::equal(out_types.begin(), out_types.end(), types.begin()));
}
}
TEST(Learner, MultiTarget) {
size_t constexpr kRows{128}, kCols{10}, kTargets{3};
auto m = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix();
m->Info().labels.Reshape(kRows, kTargets);
linalg::ElementWiseTransformHost(m->Info().labels.HostView(), omp_get_max_threads(),
[](auto i, auto) { return i; });
{
std::unique_ptr<Learner> learner{Learner::Create({m})};
learner->Configure();
Json model{Object()};
learner->SaveModel(&model);
ASSERT_EQ(get<String>(model["learner"]["learner_model_param"]["num_target"]),
std::to_string(kTargets));
}
{
std::unique_ptr<Learner> learner{Learner::Create({m})};
learner->SetParam("objective", "multi:softprob");
// unsupported objective.
EXPECT_THROW({ learner->Configure(); }, dmlc::Error);
}
}
/**
* Test the model initialization sequence is correctly performed.
*/
class InitBaseScore : public ::testing::Test {
protected:
std::size_t static constexpr Cols() { return 10; }
std::shared_ptr<DMatrix> Xy_;
void SetUp() override { Xy_ = RandomDataGenerator{10, Cols(), 0}.GenerateDMatrix(true); }
public:
void TestUpdateConfig() {
std::unique_ptr<Learner> learner{Learner::Create({Xy_})};
learner->SetParam("objective", "reg:absoluteerror");
learner->UpdateOneIter(0, Xy_);
Json config{Object{}};
learner->SaveConfig(&config);
auto base_score = GetBaseScore(config);
ASSERT_NE(base_score, ObjFunction::DefaultBaseScore());
// already initialized
auto Xy1 = RandomDataGenerator{100, Cols(), 0}.Seed(321).GenerateDMatrix(true);
learner->UpdateOneIter(1, Xy1);
learner->SaveConfig(&config);
auto base_score1 = GetBaseScore(config);
ASSERT_EQ(base_score, base_score1);
Json model{Object{}};
learner->SaveModel(&model);
learner.reset(Learner::Create({}));
learner->LoadModel(model);
learner->Configure();
learner->UpdateOneIter(2, Xy1);
learner->SaveConfig(&config);
auto base_score2 = GetBaseScore(config);
ASSERT_EQ(base_score, base_score2);
}
void TestBoostFromAvgParam() {
std::unique_ptr<Learner> learner{Learner::Create({Xy_})};
learner->SetParam("objective", "reg:absoluteerror");
learner->SetParam("base_score", "1.3");
Json config(Object{});
learner->Configure();
learner->SaveConfig(&config);
auto base_score = GetBaseScore(config);
// no change
ASSERT_FLOAT_EQ(base_score, 1.3);
HostDeviceVector<float> predt;
learner->Predict(Xy_, false, &predt, 0, 0);
auto h_predt = predt.ConstHostSpan();
for (auto v : h_predt) {
ASSERT_FLOAT_EQ(v, 1.3);
}
learner->UpdateOneIter(0, Xy_);
learner->SaveConfig(&config);
base_score = GetBaseScore(config);
// no change
ASSERT_FLOAT_EQ(base_score, 1.3);
auto from_avg = std::stoi(
get<String const>(config["learner"]["learner_model_param"]["boost_from_average"]));
// from_avg is disabled when base score is set
ASSERT_EQ(from_avg, 0);
// in the future when we can deprecate the binary model, user can set the parameter directly.
learner->SetParam("boost_from_average", "1");
learner->Configure();
learner->SaveConfig(&config);
from_avg = std::stoi(
get<String const>(config["learner"]["learner_model_param"]["boost_from_average"]));
ASSERT_EQ(from_avg, 1);
}
void TestInitAfterLoad() {
std::unique_ptr<Learner> learner{Learner::Create({Xy_})};
learner->SetParam("objective", "reg:absoluteerror");
learner->Configure();
Json model{Object{}};
learner->SaveModel(&model);
auto base_score = GetBaseScore(model);
ASSERT_EQ(base_score, ObjFunction::DefaultBaseScore());
learner.reset(Learner::Create({Xy_}));
learner->LoadModel(model);
Json config(Object{});
learner->Configure();
learner->SaveConfig(&config);
base_score = GetBaseScore(config);
ASSERT_EQ(base_score, ObjFunction::DefaultBaseScore());
learner->UpdateOneIter(0, Xy_);
learner->SaveConfig(&config);
base_score = GetBaseScore(config);
ASSERT_NE(base_score, ObjFunction::DefaultBaseScore());
}
void TestInitWithPredt() {
std::unique_ptr<Learner> learner{Learner::Create({Xy_})};
learner->SetParam("objective", "reg:absoluteerror");
HostDeviceVector<float> predt;
learner->Predict(Xy_, false, &predt, 0, 0);
auto h_predt = predt.ConstHostSpan();
for (auto v : h_predt) {
ASSERT_EQ(v, ObjFunction::DefaultBaseScore());
}
Json config(Object{});
learner->SaveConfig(&config);
auto base_score = GetBaseScore(config);
ASSERT_EQ(base_score, ObjFunction::DefaultBaseScore());
// since prediction is not used for trianing, the train procedure still runs estimation
learner->UpdateOneIter(0, Xy_);
learner->SaveConfig(&config);
base_score = GetBaseScore(config);
ASSERT_NE(base_score, ObjFunction::DefaultBaseScore());
}
void TestUpdateProcess() {
// Check that when training continuation is performed with update, the base score is
// not re-evaluated.
std::unique_ptr<Learner> learner{Learner::Create({Xy_})};
learner->SetParam("objective", "reg:absoluteerror");
learner->Configure();
learner->UpdateOneIter(0, Xy_);
Json model{Object{}};
learner->SaveModel(&model);
auto base_score = GetBaseScore(model);
auto Xy1 = RandomDataGenerator{100, Cols(), 0}.Seed(321).GenerateDMatrix(true);
learner.reset(Learner::Create({Xy1}));
learner->LoadModel(model);
learner->SetParam("process_type", "update");
learner->SetParam("updater", "refresh");
learner->UpdateOneIter(1, Xy1);
Json config(Object{});
learner->SaveConfig(&config);
auto base_score1 = GetBaseScore(config);
ASSERT_EQ(base_score, base_score1);
}
};
TEST_F(InitBaseScore, TestUpdateConfig) { this->TestUpdateConfig(); }
TEST_F(InitBaseScore, FromAvgParam) { this->TestBoostFromAvgParam(); }
TEST_F(InitBaseScore, InitAfterLoad) { this->TestInitAfterLoad(); }
TEST_F(InitBaseScore, InitWithPredict) { this->TestInitWithPredt(); }
TEST_F(InitBaseScore, UpdateProcess) { this->TestUpdateProcess(); }
void TestColumnSplit(std::shared_ptr<DMatrix> dmat, std::vector<float> const& expected_base_scores,
std::vector<Json> const& expected_models) {
auto const world_size = collective::GetWorldSize();
auto const rank = collective::GetRank();
std::shared_ptr<DMatrix> sliced{dmat->SliceCol(world_size, rank)};
auto i = 0;
for (auto const* entry : ::dmlc::Registry<::xgboost::ObjFunctionReg>::List()) {
std::unique_ptr<Learner> learner{Learner::Create({sliced})};
learner->SetParam("tree_method", "approx");
learner->SetParam("objective", entry->name);
if (entry->name.find("quantile") != std::string::npos) {
learner->SetParam("quantile_alpha", "0.5");
}
if (entry->name.find("multi") != std::string::npos) {
learner->SetParam("num_class", "3");
}
learner->UpdateOneIter(0, sliced);
Json config{Object{}};
learner->SaveConfig(&config);
auto base_score = GetBaseScore(config);
ASSERT_EQ(base_score, expected_base_scores[i]);
Json model{Object{}};
learner->SaveModel(&model);
ASSERT_EQ(model, expected_models[i]);
i++;
}
}
TEST(ColumnSplit, Objectives) {
auto constexpr kRows = 10, kCols = 10;
std::shared_ptr<DMatrix> dmat{RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix(true)};
auto& h_upper = dmat->Info().labels_upper_bound_.HostVector();
auto& h_lower = dmat->Info().labels_lower_bound_.HostVector();
h_lower.resize(kRows);
h_upper.resize(kRows);
for (size_t i = 0; i < kRows; ++i) {
h_lower[i] = 1;
h_upper[i] = 10;
}
std::vector<float> base_scores;
std::vector<Json> models;
for (auto const* entry : ::dmlc::Registry<::xgboost::ObjFunctionReg>::List()) {
std::unique_ptr<Learner> learner{Learner::Create({dmat})};
learner->SetParam("tree_method", "approx");
learner->SetParam("objective", entry->name);
if (entry->name.find("quantile") != std::string::npos) {
learner->SetParam("quantile_alpha", "0.5");
}
if (entry->name.find("multi") != std::string::npos) {
learner->SetParam("num_class", "3");
}
learner->UpdateOneIter(0, dmat);
Json config{Object{}};
learner->SaveConfig(&config);
base_scores.emplace_back(GetBaseScore(config));
Json model{Object{}};
learner->SaveModel(&model);
models.emplace_back(model);
}
auto constexpr kWorldSize{3};
RunWithInMemoryCommunicator(kWorldSize, &TestColumnSplit, dmat, base_scores, models);
}
} // namespace xgboost