xgboost/tests/cpp/plugin/test_federated_learner.cc

104 lines
3.3 KiB
C++

/*!
* Copyright 2023 XGBoost contributors
*/
#include <dmlc/parameter.h>
#include <gtest/gtest.h>
#include <xgboost/data.h>
#include <xgboost/objective.h>
#include "../../../plugin/federated/federated_server.h"
#include "../../../src/collective/communicator-inl.h"
#include "../helpers.h"
#include "helpers.h"
namespace xgboost {
void VerifyObjectives(size_t rows, size_t cols, std::vector<float> const &expected_base_scores,
std::vector<Json> const &expected_models) {
auto const world_size = collective::GetWorldSize();
auto const rank = collective::GetRank();
std::shared_ptr<DMatrix> dmat{RandomDataGenerator{rows, cols, 0}.GenerateDMatrix(rank == 0)};
if (rank == 0) {
auto &h_upper = dmat->Info().labels_upper_bound_.HostVector();
auto &h_lower = dmat->Info().labels_lower_bound_.HostVector();
h_lower.resize(rows);
h_upper.resize(rows);
for (size_t i = 0; i < rows; ++i) {
h_lower[i] = 1;
h_upper[i] = 10;
}
}
std::shared_ptr<DMatrix> sliced{dmat->SliceCol(world_size, rank)};
auto i = 0;
for (auto const *entry : ::dmlc::Registry<::xgboost::ObjFunctionReg>::List()) {
std::unique_ptr<Learner> learner{Learner::Create({sliced})};
learner->SetParam("tree_method", "approx");
learner->SetParam("objective", entry->name);
if (entry->name.find("quantile") != std::string::npos) {
learner->SetParam("quantile_alpha", "0.5");
}
if (entry->name.find("multi") != std::string::npos) {
learner->SetParam("num_class", "3");
}
learner->UpdateOneIter(0, sliced);
Json config{Object{}};
learner->SaveConfig(&config);
auto base_score = GetBaseScore(config);
ASSERT_EQ(base_score, expected_base_scores[i]);
Json model{Object{}};
learner->SaveModel(&model);
ASSERT_EQ(model, expected_models[i]);
i++;
}
}
class FederatedLearnerTest : public BaseFederatedTest {
protected:
static auto constexpr kRows{16};
static auto constexpr kCols{16};
};
TEST_F(FederatedLearnerTest, Objectives) {
std::shared_ptr<DMatrix> dmat{RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix(true)};
auto &h_upper = dmat->Info().labels_upper_bound_.HostVector();
auto &h_lower = dmat->Info().labels_lower_bound_.HostVector();
h_lower.resize(kRows);
h_upper.resize(kRows);
for (size_t i = 0; i < kRows; ++i) {
h_lower[i] = 1;
h_upper[i] = 10;
}
std::vector<float> base_scores;
std::vector<Json> models;
for (auto const *entry : ::dmlc::Registry<::xgboost::ObjFunctionReg>::List()) {
std::unique_ptr<Learner> learner{Learner::Create({dmat})};
learner->SetParam("tree_method", "approx");
learner->SetParam("objective", entry->name);
if (entry->name.find("quantile") != std::string::npos) {
learner->SetParam("quantile_alpha", "0.5");
}
if (entry->name.find("multi") != std::string::npos) {
learner->SetParam("num_class", "3");
}
learner->UpdateOneIter(0, dmat);
Json config{Object{}};
learner->SaveConfig(&config);
base_scores.emplace_back(GetBaseScore(config));
Json model{Object{}};
learner->SaveModel(&model);
models.emplace_back(model);
}
RunWithFederatedCommunicator(kWorldSize, server_address_, &VerifyObjectives, kRows, kCols,
base_scores, models);
}
} // namespace xgboost