287 lines
9.2 KiB
Plaintext
287 lines
9.2 KiB
Plaintext
/**
|
|
* Copyright 2019-2023 by Contributors
|
|
* \file survival_metric.cu
|
|
* \brief Metrics for survival analysis
|
|
* \author Avinash Barnwal, Hyunsu Cho and Toby Hocking
|
|
*/
|
|
|
|
#include <dmlc/registry.h>
|
|
|
|
#include <array>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include "../collective/communicator-inl.h"
|
|
#include "../common/math.h"
|
|
#include "../common/survival_util.h"
|
|
#include "../common/threading_utils.h"
|
|
#include "metric_common.h" // MetricNoCache
|
|
#include "xgboost/host_device_vector.h"
|
|
#include "xgboost/json.h"
|
|
#include "xgboost/metric.h"
|
|
|
|
#if defined(XGBOOST_USE_CUDA)
|
|
#include <thrust/execution_policy.h> // thrust::cuda::par
|
|
#include "../common/device_helpers.cuh"
|
|
#endif // XGBOOST_USE_CUDA
|
|
|
|
using AFTParam = xgboost::common::AFTParam;
|
|
using ProbabilityDistributionType = xgboost::common::ProbabilityDistributionType;
|
|
template <typename Distribution>
|
|
using AFTLoss = xgboost::common::AFTLoss<Distribution>;
|
|
|
|
namespace xgboost {
|
|
namespace metric {
|
|
// tag the this file, used by force static link later.
|
|
DMLC_REGISTRY_FILE_TAG(survival_metric);
|
|
|
|
template <typename EvalRow>
|
|
class ElementWiseSurvivalMetricsReduction {
|
|
public:
|
|
ElementWiseSurvivalMetricsReduction() = default;
|
|
void Configure(EvalRow policy) {
|
|
policy_ = policy;
|
|
}
|
|
|
|
PackedReduceResult
|
|
CpuReduceMetrics(const HostDeviceVector<bst_float> &weights,
|
|
const HostDeviceVector<bst_float> &labels_lower_bound,
|
|
const HostDeviceVector<bst_float> &labels_upper_bound,
|
|
const HostDeviceVector<bst_float> &preds,
|
|
int32_t n_threads) const {
|
|
size_t ndata = labels_lower_bound.Size();
|
|
CHECK_EQ(ndata, labels_upper_bound.Size());
|
|
|
|
const auto& h_labels_lower_bound = labels_lower_bound.HostVector();
|
|
const auto& h_labels_upper_bound = labels_upper_bound.HostVector();
|
|
const auto& h_weights = weights.HostVector();
|
|
const auto& h_preds = preds.HostVector();
|
|
|
|
std::vector<double> score_tloc(n_threads, 0.0);
|
|
std::vector<double> weight_tloc(n_threads, 0.0);
|
|
|
|
common::ParallelFor(ndata, n_threads, [&](size_t i) {
|
|
const double wt =
|
|
h_weights.empty() ? 1.0 : static_cast<double>(h_weights[i]);
|
|
auto t_idx = omp_get_thread_num();
|
|
score_tloc[t_idx] +=
|
|
policy_.EvalRow(static_cast<double>(h_labels_lower_bound[i]),
|
|
static_cast<double>(h_labels_upper_bound[i]),
|
|
static_cast<double>(h_preds[i])) *
|
|
wt;
|
|
weight_tloc[t_idx] += wt;
|
|
});
|
|
|
|
double residue_sum = std::accumulate(score_tloc.cbegin(), score_tloc.cend(), 0.0);
|
|
double weights_sum = std::accumulate(weight_tloc.cbegin(), weight_tloc.cend(), 0.0);
|
|
|
|
PackedReduceResult res{residue_sum, weights_sum};
|
|
return res;
|
|
}
|
|
|
|
#if defined(XGBOOST_USE_CUDA)
|
|
|
|
PackedReduceResult DeviceReduceMetrics(
|
|
const HostDeviceVector<bst_float>& weights,
|
|
const HostDeviceVector<bst_float>& labels_lower_bound,
|
|
const HostDeviceVector<bst_float>& labels_upper_bound,
|
|
const HostDeviceVector<bst_float>& preds) {
|
|
size_t ndata = labels_lower_bound.Size();
|
|
CHECK_EQ(ndata, labels_upper_bound.Size());
|
|
|
|
thrust::counting_iterator<size_t> begin(0);
|
|
thrust::counting_iterator<size_t> end = begin + ndata;
|
|
|
|
auto s_label_lower_bound = labels_lower_bound.DeviceSpan();
|
|
auto s_label_upper_bound = labels_upper_bound.DeviceSpan();
|
|
auto s_preds = preds.DeviceSpan();
|
|
auto s_weights = weights.DeviceSpan();
|
|
|
|
const bool is_null_weight = (weights.Size() == 0);
|
|
|
|
auto d_policy = policy_;
|
|
|
|
dh::XGBCachingDeviceAllocator<char> alloc;
|
|
PackedReduceResult result = thrust::transform_reduce(
|
|
thrust::cuda::par(alloc),
|
|
begin, end,
|
|
[=] XGBOOST_DEVICE(size_t idx) {
|
|
double weight = is_null_weight ? 1.0 : static_cast<double>(s_weights[idx]);
|
|
double residue = d_policy.EvalRow(
|
|
static_cast<double>(s_label_lower_bound[idx]),
|
|
static_cast<double>(s_label_upper_bound[idx]),
|
|
static_cast<double>(s_preds[idx]));
|
|
residue *= weight;
|
|
return PackedReduceResult{residue, weight};
|
|
},
|
|
PackedReduceResult(),
|
|
thrust::plus<PackedReduceResult>());
|
|
|
|
return result;
|
|
}
|
|
|
|
#endif // XGBOOST_USE_CUDA
|
|
|
|
PackedReduceResult Reduce(
|
|
const Context &ctx,
|
|
const HostDeviceVector<bst_float>& weights,
|
|
const HostDeviceVector<bst_float>& labels_lower_bound,
|
|
const HostDeviceVector<bst_float>& labels_upper_bound,
|
|
const HostDeviceVector<bst_float>& preds) {
|
|
PackedReduceResult result;
|
|
|
|
if (ctx.gpu_id < 0) {
|
|
result = CpuReduceMetrics(weights, labels_lower_bound, labels_upper_bound,
|
|
preds, ctx.Threads());
|
|
}
|
|
#if defined(XGBOOST_USE_CUDA)
|
|
else { // NOLINT
|
|
preds.SetDevice(ctx.gpu_id);
|
|
labels_lower_bound.SetDevice(ctx.gpu_id);
|
|
labels_upper_bound.SetDevice(ctx.gpu_id);
|
|
weights.SetDevice(ctx.gpu_id);
|
|
|
|
dh::safe_cuda(cudaSetDevice(ctx.gpu_id));
|
|
result = DeviceReduceMetrics(weights, labels_lower_bound, labels_upper_bound, preds);
|
|
}
|
|
#endif // defined(XGBOOST_USE_CUDA)
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
EvalRow policy_;
|
|
};
|
|
|
|
struct EvalIntervalRegressionAccuracy {
|
|
void Configure(const Args&) {}
|
|
|
|
const char* Name() const {
|
|
return "interval-regression-accuracy";
|
|
}
|
|
|
|
XGBOOST_DEVICE double EvalRow(
|
|
double label_lower_bound, double label_upper_bound, double log_pred) const {
|
|
const double pred = exp(log_pred);
|
|
return (pred >= label_lower_bound && pred <= label_upper_bound) ? 1.0 : 0.0;
|
|
}
|
|
|
|
static double GetFinal(double esum, double wsum) {
|
|
return wsum == 0 ? esum : esum / wsum;
|
|
}
|
|
};
|
|
|
|
/*! \brief Negative log likelihood of Accelerated Failure Time model */
|
|
template <typename Distribution>
|
|
struct EvalAFTNLogLik {
|
|
void Configure(const Args& args) {
|
|
param_.UpdateAllowUnknown(args);
|
|
}
|
|
|
|
const char* Name() const {
|
|
return "aft-nloglik";
|
|
}
|
|
|
|
XGBOOST_DEVICE double EvalRow(
|
|
double label_lower_bound, double label_upper_bound, double pred) const {
|
|
return AFTLoss<Distribution>::Loss(
|
|
label_lower_bound, label_upper_bound, pred, param_.aft_loss_distribution_scale);
|
|
}
|
|
|
|
static double GetFinal(double esum, double wsum) {
|
|
return wsum == 0 ? esum : esum / wsum;
|
|
}
|
|
private:
|
|
AFTParam param_;
|
|
};
|
|
|
|
template <typename Policy>
|
|
struct EvalEWiseSurvivalBase : public MetricNoCache {
|
|
explicit EvalEWiseSurvivalBase(Context const* ctx) { ctx_ = ctx; }
|
|
EvalEWiseSurvivalBase() = default;
|
|
|
|
void Configure(const Args& args) override {
|
|
policy_.Configure(args);
|
|
reducer_.Configure(policy_);
|
|
CHECK(ctx_);
|
|
}
|
|
|
|
double Eval(const HostDeviceVector<float>& preds, const MetaInfo& info) override {
|
|
CHECK_EQ(preds.Size(), info.labels_lower_bound_.Size());
|
|
CHECK_EQ(preds.Size(), info.labels_upper_bound_.Size());
|
|
CHECK(ctx_);
|
|
auto result = reducer_.Reduce(*ctx_, info.weights_, info.labels_lower_bound_,
|
|
info.labels_upper_bound_, preds);
|
|
|
|
std::array<double, 2> dat{result.Residue(), result.Weights()};
|
|
collective::GlobalSum(info, &dat);
|
|
return Policy::GetFinal(dat[0], dat[1]);
|
|
}
|
|
|
|
const char* Name() const override {
|
|
return policy_.Name();
|
|
}
|
|
|
|
private:
|
|
Policy policy_;
|
|
ElementWiseSurvivalMetricsReduction<Policy> reducer_;
|
|
int device_{-1}; // used only for GPU metric
|
|
};
|
|
|
|
// This class exists because we want to perform dispatch according to the distribution type at
|
|
// configuration time, not at prediction time.
|
|
struct AFTNLogLikDispatcher : public MetricNoCache {
|
|
const char* Name() const override {
|
|
return "aft-nloglik";
|
|
}
|
|
|
|
double Eval(const HostDeviceVector<bst_float>& preds, const MetaInfo& info) override {
|
|
CHECK(metric_) << "AFT metric must be configured first, with distribution type and scale";
|
|
return metric_->Eval(preds, info);
|
|
}
|
|
|
|
void Configure(const Args& args) override {
|
|
param_.UpdateAllowUnknown(args);
|
|
switch (param_.aft_loss_distribution) {
|
|
case common::ProbabilityDistributionType::kNormal:
|
|
metric_.reset(new EvalEWiseSurvivalBase<EvalAFTNLogLik<common::NormalDistribution>>(ctx_));
|
|
break;
|
|
case common::ProbabilityDistributionType::kLogistic:
|
|
metric_.reset(new EvalEWiseSurvivalBase<EvalAFTNLogLik<common::LogisticDistribution>>(ctx_));
|
|
break;
|
|
case common::ProbabilityDistributionType::kExtreme:
|
|
metric_.reset(new EvalEWiseSurvivalBase<EvalAFTNLogLik<common::ExtremeDistribution>>(ctx_));
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unknown probability distribution";
|
|
}
|
|
metric_->Configure(args);
|
|
}
|
|
|
|
void SaveConfig(Json* p_out) const override {
|
|
auto& out = *p_out;
|
|
out["name"] = String(this->Name());
|
|
out["aft_loss_param"] = ToJson(param_);
|
|
}
|
|
|
|
void LoadConfig(const Json& in) override {
|
|
FromJson(in["aft_loss_param"], ¶m_);
|
|
}
|
|
|
|
private:
|
|
AFTParam param_;
|
|
std::unique_ptr<MetricNoCache> metric_;
|
|
};
|
|
|
|
XGBOOST_REGISTER_METRIC(AFTNLogLik, "aft-nloglik")
|
|
.describe("Negative log likelihood of Accelerated Failure Time model.")
|
|
.set_body([](const char*) { return new AFTNLogLikDispatcher(); });
|
|
|
|
XGBOOST_REGISTER_METRIC(IntervalRegressionAccuracy, "interval-regression-accuracy")
|
|
.describe("")
|
|
.set_body([](const char*) {
|
|
return new EvalEWiseSurvivalBase<EvalIntervalRegressionAccuracy>();
|
|
});
|
|
|
|
} // namespace metric
|
|
} // namespace xgboost
|