xgboost/regression/xgboost_reg_eval.h
2014-03-12 20:28:21 -07:00

120 lines
4.5 KiB
C++

#ifndef XGBOOST_REG_EVAL_H
#define XGBOOST_REG_EVAL_H
/*!
* \file xgboost_reg_eval.h
* \brief evaluation metrics for regression and classification
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.tchen@gmail.com
*/
#include <cmath>
#include <vector>
#include <algorithm>
#include "../utils/xgboost_utils.h"
#include "../utils/xgboost_omp.h"
namespace xgboost{
namespace regression{
/*! \brief evaluator that evaluates the loss metrics */
struct IEvaluator{
/*!
* \brief evaluate a specific metric
* \param preds prediction
* \param labels label
*/
virtual float Eval( const std::vector<float> &preds,
const std::vector<float> &labels ) const= 0;
/*! \return name of metric */
virtual const char *Name( void ) const= 0;
};
/*! \brief RMSE */
struct EvalRMSE : public IEvaluator{
virtual float Eval( const std::vector<float> &preds,
const std::vector<float> &labels ) const{
const unsigned ndata = static_cast<unsigned>( preds.size() );
float sum = 0.0;
#pragma omp parallel for reduction(+:sum) schedule( static )
for( unsigned i = 0; i < ndata; ++ i ){
float diff = preds[i] - labels[i];
sum += diff * diff;
}
return sqrtf( sum / ndata );
}
virtual const char *Name( void ) const{
return "rmse";
}
};
/*! \brief Error */
struct EvalError : public IEvaluator{
virtual float Eval( const std::vector<float> &preds,
const std::vector<float> &labels ) const{
const unsigned ndata = static_cast<unsigned>( preds.size() );
unsigned nerr = 0;
#pragma omp parallel for reduction(+:nerr) schedule( static )
for( unsigned i = 0; i < ndata; ++ i ){
if( preds[i] > 0.5f ){
if( labels[i] < 0.5f ) nerr += 1;
}else{
if( labels[i] > 0.5f ) nerr += 1;
}
}
return static_cast<float>(nerr) / ndata;
}
virtual const char *Name( void ) const{
return "error";
}
};
/*! \brief Error */
struct EvalLogLoss : public IEvaluator{
virtual float Eval( const std::vector<float> &preds,
const std::vector<float> &labels ) const{
const unsigned ndata = static_cast<unsigned>( preds.size() );
unsigned nerr = 0;
#pragma omp parallel for reduction(+:nerr) schedule( static )
for( unsigned i = 0; i < ndata; ++ i ){
const float y = labels[i];
const float py = preds[i];
nerr -= y * std::log(py) + (1.0f-y)*std::log(1-py);
}
return static_cast<float>(nerr) / ndata;
}
virtual const char *Name( void ) const{
return "negllik";
}
};
};
namespace regression{
/*! \brief a set of evaluators */
struct EvalSet{
public:
inline void AddEval( const char *name ){
if( !strcmp( name, "rmse") ) evals_.push_back( &rmse_ );
if( !strcmp( name, "error") ) evals_.push_back( &error_ );
if( !strcmp( name, "logloss") ) evals_.push_back( &logloss_ );
}
inline void Init( void ){
std::sort( evals_.begin(), evals_.end() );
evals_.resize( std::unique( evals_.begin(), evals_.end() ) - evals_.begin() );
}
inline void Eval( FILE *fo, const char *evname,
const std::vector<float> &preds,
const std::vector<float> &labels ) const{
for( size_t i = 0; i < evals_.size(); ++ i ){
float res = evals_[i]->Eval( preds, labels );
fprintf( fo, "\t%s-%s:%f", evname, evals_[i]->Name(), res );
}
}
private:
EvalRMSE rmse_;
EvalError error_;
EvalLogLoss logloss_;
std::vector<const IEvaluator*> evals_;
};
};
};
#endif