xgboost/tests/python-gpu/test_gpu_basic_models.py
Philip Hyunsu Cho 751160b69c
Upgrade to CUDA 10.0 (#5649)
Co-authored-by: fis <jm.yuan@outlook.com>
2020-05-11 18:04:47 +08:00

54 lines
1.8 KiB
Python

import sys
import os
import unittest
import numpy as np
import xgboost as xgb
sys.path.append("tests/python")
# Don't import the test class, otherwise they will run twice.
import test_basic_models as test_bm # noqa
rng = np.random.RandomState(1994)
class TestGPUBasicModels(unittest.TestCase):
cputest = test_bm.TestModels()
def run_cls(self, X, y, deterministic):
cls = xgb.XGBClassifier(tree_method='gpu_hist',
deterministic_histogram=deterministic,
single_precision_histogram=True)
cls.fit(X, y)
cls.get_booster().save_model('test_deterministic_gpu_hist-0.json')
cls = xgb.XGBClassifier(tree_method='gpu_hist',
deterministic_histogram=deterministic,
single_precision_histogram=True)
cls.fit(X, y)
cls.get_booster().save_model('test_deterministic_gpu_hist-1.json')
with open('test_deterministic_gpu_hist-0.json', 'r') as fd:
model_0 = fd.read()
with open('test_deterministic_gpu_hist-1.json', 'r') as fd:
model_1 = fd.read()
os.remove('test_deterministic_gpu_hist-0.json')
os.remove('test_deterministic_gpu_hist-1.json')
return hash(model_0), hash(model_1)
def test_eta_decay_gpu_hist(self):
self.cputest.run_eta_decay('gpu_hist')
def test_deterministic_gpu_hist(self):
kRows = 1000
kCols = 64
kClasses = 4
# Create large values to force rounding.
X = np.random.randn(kRows, kCols) * 1e4
y = np.random.randint(0, kClasses, size=kRows) * 1e4
model_0, model_1 = self.run_cls(X, y, True)
assert model_0 == model_1
model_0, model_1 = self.run_cls(X, y, False)
assert model_0 != model_1