246 lines
8.9 KiB
Plaintext
246 lines
8.9 KiB
Plaintext
/**
|
|
* Copyright 2017-2023, XGBoost contributors
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
#include <xgboost/c_api.h>
|
|
#include <xgboost/learner.h>
|
|
#include <xgboost/logging.h>
|
|
#include <xgboost/predictor.h>
|
|
|
|
#include <string>
|
|
|
|
#include "../../../src/data/device_adapter.cuh"
|
|
#include "../../../src/data/proxy_dmatrix.h"
|
|
#include "../../../src/gbm/gbtree_model.h"
|
|
#include "../helpers.h"
|
|
#include "test_predictor.h"
|
|
|
|
namespace xgboost {
|
|
namespace predictor {
|
|
|
|
TEST(GPUPredictor, Basic) {
|
|
auto cpu_lparam = MakeCUDACtx(-1);
|
|
auto gpu_lparam = MakeCUDACtx(0);
|
|
|
|
std::unique_ptr<Predictor> gpu_predictor =
|
|
std::unique_ptr<Predictor>(Predictor::Create("gpu_predictor", &gpu_lparam));
|
|
std::unique_ptr<Predictor> cpu_predictor =
|
|
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor", &cpu_lparam));
|
|
|
|
gpu_predictor->Configure({});
|
|
cpu_predictor->Configure({});
|
|
|
|
for (size_t i = 1; i < 33; i *= 2) {
|
|
int n_row = i, n_col = i;
|
|
auto dmat = RandomDataGenerator(n_row, n_col, 0).GenerateDMatrix();
|
|
|
|
Context ctx;
|
|
ctx.gpu_id = 0;
|
|
LearnerModelParam mparam{MakeMP(n_col, .5, 1, ctx.gpu_id)};
|
|
gbm::GBTreeModel model = CreateTestModel(&mparam, &ctx);
|
|
|
|
// Test predict batch
|
|
PredictionCacheEntry gpu_out_predictions;
|
|
PredictionCacheEntry cpu_out_predictions;
|
|
|
|
gpu_predictor->InitOutPredictions(dmat->Info(), &gpu_out_predictions.predictions, model);
|
|
gpu_predictor->PredictBatch(dmat.get(), &gpu_out_predictions, model, 0);
|
|
cpu_predictor->InitOutPredictions(dmat->Info(), &cpu_out_predictions.predictions, model);
|
|
cpu_predictor->PredictBatch(dmat.get(), &cpu_out_predictions, model, 0);
|
|
|
|
std::vector<float>& gpu_out_predictions_h = gpu_out_predictions.predictions.HostVector();
|
|
std::vector<float>& cpu_out_predictions_h = cpu_out_predictions.predictions.HostVector();
|
|
float abs_tolerance = 0.001;
|
|
for (size_t j = 0; j < gpu_out_predictions.predictions.Size(); j++) {
|
|
ASSERT_NEAR(gpu_out_predictions_h[j], cpu_out_predictions_h[j], abs_tolerance);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(GPUPredictor, EllpackBasic) {
|
|
size_t constexpr kCols {8};
|
|
for (size_t bins = 2; bins < 258; bins += 16) {
|
|
size_t rows = bins * 16;
|
|
auto p_m = RandomDataGenerator{rows, kCols, 0.0}.Bins(bins).Device(0).GenerateDeviceDMatrix();
|
|
ASSERT_FALSE(p_m->PageExists<SparsePage>());
|
|
TestPredictionFromGradientIndex<EllpackPage>("gpu_predictor", rows, kCols, p_m);
|
|
TestPredictionFromGradientIndex<EllpackPage>("gpu_predictor", bins, kCols, p_m);
|
|
}
|
|
}
|
|
|
|
TEST(GPUPredictor, EllpackTraining) {
|
|
size_t constexpr kRows { 128 }, kCols { 16 }, kBins { 64 };
|
|
auto p_ellpack =
|
|
RandomDataGenerator{kRows, kCols, 0.0}.Bins(kBins).Device(0).GenerateDeviceDMatrix();
|
|
HostDeviceVector<float> storage(kRows * kCols);
|
|
auto columnar = RandomDataGenerator{kRows, kCols, 0.0}
|
|
.Device(0)
|
|
.GenerateArrayInterface(&storage);
|
|
auto adapter = data::CupyAdapter(columnar);
|
|
std::shared_ptr<DMatrix> p_full {
|
|
DMatrix::Create(&adapter, std::numeric_limits<float>::quiet_NaN(), 1)
|
|
};
|
|
TestTrainingPrediction(kRows, kBins, "gpu_hist", p_full, p_ellpack);
|
|
}
|
|
|
|
TEST(GPUPredictor, ExternalMemoryTest) {
|
|
auto lparam = MakeCUDACtx(0);
|
|
std::unique_ptr<Predictor> gpu_predictor =
|
|
std::unique_ptr<Predictor>(Predictor::Create("gpu_predictor", &lparam));
|
|
gpu_predictor->Configure({});
|
|
|
|
const int n_classes = 3;
|
|
Context ctx;
|
|
ctx.gpu_id = 0;
|
|
LearnerModelParam mparam{MakeMP(5, .5, n_classes, ctx.gpu_id)};
|
|
|
|
gbm::GBTreeModel model = CreateTestModel(&mparam, &ctx, n_classes);
|
|
std::vector<std::unique_ptr<DMatrix>> dmats;
|
|
|
|
dmats.push_back(CreateSparsePageDMatrix(400));
|
|
dmats.push_back(CreateSparsePageDMatrix(800));
|
|
dmats.push_back(CreateSparsePageDMatrix(8000));
|
|
|
|
for (const auto& dmat: dmats) {
|
|
dmat->Info().base_margin_ = decltype(dmat->Info().base_margin_){
|
|
{dmat->Info().num_row_, static_cast<size_t>(n_classes)}, 0};
|
|
dmat->Info().base_margin_.Data()->Fill(0.5);
|
|
PredictionCacheEntry out_predictions;
|
|
gpu_predictor->InitOutPredictions(dmat->Info(), &out_predictions.predictions, model);
|
|
gpu_predictor->PredictBatch(dmat.get(), &out_predictions, model, 0);
|
|
EXPECT_EQ(out_predictions.predictions.Size(), dmat->Info().num_row_ * n_classes);
|
|
const std::vector<float> &host_vector = out_predictions.predictions.ConstHostVector();
|
|
for (size_t i = 0; i < host_vector.size() / n_classes; i++) {
|
|
ASSERT_EQ(host_vector[i * n_classes], 2.0);
|
|
ASSERT_EQ(host_vector[i * n_classes + 1], 0.5);
|
|
ASSERT_EQ(host_vector[i * n_classes + 2], 0.5);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(GPUPredictor, InplacePredictCupy) {
|
|
size_t constexpr kRows{128}, kCols{64};
|
|
RandomDataGenerator gen(kRows, kCols, 0.5);
|
|
gen.Device(0);
|
|
HostDeviceVector<float> data;
|
|
std::string interface_str = gen.GenerateArrayInterface(&data);
|
|
std::shared_ptr<DMatrix> p_fmat{new data::DMatrixProxy};
|
|
dynamic_cast<data::DMatrixProxy*>(p_fmat.get())->SetCUDAArray(interface_str.c_str());
|
|
TestInplacePrediction(p_fmat, "gpu_predictor", kRows, kCols, 0);
|
|
}
|
|
|
|
TEST(GPUPredictor, InplacePredictCuDF) {
|
|
size_t constexpr kRows{128}, kCols{64};
|
|
RandomDataGenerator gen(kRows, kCols, 0.5);
|
|
gen.Device(0);
|
|
std::vector<HostDeviceVector<float>> storage(kCols);
|
|
auto interface_str = gen.GenerateColumnarArrayInterface(&storage);
|
|
std::shared_ptr<DMatrix> p_fmat{new data::DMatrixProxy};
|
|
dynamic_cast<data::DMatrixProxy*>(p_fmat.get())->SetCUDAArray(interface_str.c_str());
|
|
TestInplacePrediction(p_fmat, "gpu_predictor", kRows, kCols, 0);
|
|
}
|
|
|
|
TEST(GpuPredictor, LesserFeatures) {
|
|
TestPredictionWithLesserFeatures("gpu_predictor");
|
|
}
|
|
|
|
// Very basic test of empty model
|
|
TEST(GPUPredictor, ShapStump) {
|
|
cudaSetDevice(0);
|
|
|
|
Context ctx;
|
|
ctx.gpu_id = 0;
|
|
LearnerModelParam mparam{MakeMP(1, .5, 1, ctx.gpu_id)};
|
|
gbm::GBTreeModel model(&mparam, &ctx);
|
|
|
|
std::vector<std::unique_ptr<RegTree>> trees;
|
|
trees.push_back(std::unique_ptr<RegTree>(new RegTree));
|
|
model.CommitModelGroup(std::move(trees), 0);
|
|
|
|
auto gpu_lparam = MakeCUDACtx(0);
|
|
std::unique_ptr<Predictor> gpu_predictor = std::unique_ptr<Predictor>(
|
|
Predictor::Create("gpu_predictor", &gpu_lparam));
|
|
gpu_predictor->Configure({});
|
|
HostDeviceVector<float> predictions;
|
|
auto dmat = RandomDataGenerator(3, 1, 0).GenerateDMatrix();
|
|
gpu_predictor->PredictContribution(dmat.get(), &predictions, model);
|
|
auto& phis = predictions.HostVector();
|
|
auto base_score = mparam.BaseScore(Context::kCpuId)(0);
|
|
EXPECT_EQ(phis[0], 0.0);
|
|
EXPECT_EQ(phis[1], base_score);
|
|
EXPECT_EQ(phis[2], 0.0);
|
|
EXPECT_EQ(phis[3], base_score);
|
|
EXPECT_EQ(phis[4], 0.0);
|
|
EXPECT_EQ(phis[5], base_score);
|
|
}
|
|
|
|
TEST(GPUPredictor, Shap) {
|
|
Context ctx;
|
|
ctx.gpu_id = 0;
|
|
LearnerModelParam mparam{MakeMP(1, .5, 1, ctx.gpu_id)};
|
|
gbm::GBTreeModel model(&mparam, &ctx);
|
|
|
|
std::vector<std::unique_ptr<RegTree>> trees;
|
|
trees.push_back(std::unique_ptr<RegTree>(new RegTree));
|
|
trees[0]->ExpandNode(0, 0, 0.5, true, 1.0, -1.0, 1.0, 0.0, 5.0, 2.0, 3.0);
|
|
model.CommitModelGroup(std::move(trees), 0);
|
|
|
|
auto gpu_lparam = MakeCUDACtx(0);
|
|
auto cpu_lparam = MakeCUDACtx(-1);
|
|
std::unique_ptr<Predictor> gpu_predictor = std::unique_ptr<Predictor>(
|
|
Predictor::Create("gpu_predictor", &gpu_lparam));
|
|
std::unique_ptr<Predictor> cpu_predictor = std::unique_ptr<Predictor>(
|
|
Predictor::Create("cpu_predictor", &cpu_lparam));
|
|
gpu_predictor->Configure({});
|
|
cpu_predictor->Configure({});
|
|
HostDeviceVector<float> predictions;
|
|
HostDeviceVector<float> cpu_predictions;
|
|
auto dmat = RandomDataGenerator(3, 1, 0).GenerateDMatrix();
|
|
gpu_predictor->PredictContribution(dmat.get(), &predictions, model);
|
|
cpu_predictor->PredictContribution(dmat.get(), &cpu_predictions, model);
|
|
auto& phis = predictions.HostVector();
|
|
auto& cpu_phis = cpu_predictions.HostVector();
|
|
for (auto i = 0ull; i < phis.size(); i++) {
|
|
EXPECT_NEAR(cpu_phis[i], phis[i], 1e-3);
|
|
}
|
|
}
|
|
|
|
TEST(GPUPredictor, IterationRange) {
|
|
TestIterationRange("gpu_predictor");
|
|
}
|
|
|
|
TEST(GPUPredictor, CategoricalPrediction) {
|
|
TestCategoricalPrediction("gpu_predictor");
|
|
}
|
|
|
|
TEST(GPUPredictor, CategoricalPredictLeaf) {
|
|
TestCategoricalPredictLeaf(StringView{"gpu_predictor"});
|
|
}
|
|
|
|
TEST(GPUPredictor, PredictLeafBasic) {
|
|
size_t constexpr kRows = 5, kCols = 5;
|
|
auto dmat = RandomDataGenerator(kRows, kCols, 0).Device(0).GenerateDMatrix();
|
|
auto lparam = MakeCUDACtx(GPUIDX);
|
|
std::unique_ptr<Predictor> gpu_predictor =
|
|
std::unique_ptr<Predictor>(Predictor::Create("gpu_predictor", &lparam));
|
|
gpu_predictor->Configure({});
|
|
|
|
LearnerModelParam mparam{MakeMP(kCols, .0, 1)};
|
|
Context ctx;
|
|
gbm::GBTreeModel model = CreateTestModel(&mparam, &ctx);
|
|
|
|
HostDeviceVector<float> leaf_out_predictions;
|
|
gpu_predictor->PredictLeaf(dmat.get(), &leaf_out_predictions, model);
|
|
auto const& h_leaf_out_predictions = leaf_out_predictions.ConstHostVector();
|
|
for (auto v : h_leaf_out_predictions) {
|
|
ASSERT_EQ(v, 0);
|
|
}
|
|
}
|
|
|
|
TEST(GPUPredictor, Sparse) {
|
|
TestSparsePrediction(0.2, "gpu_predictor");
|
|
TestSparsePrediction(0.8, "gpu_predictor");
|
|
}
|
|
} // namespace predictor
|
|
} // namespace xgboost
|