* Change cmake option * Move source files * Move google tests * Move python tests * Move benchmarks * Move documentation * Remove makefile support * Fix test run * Move GPU tests
244 lines
6.9 KiB
Plaintext
244 lines
6.9 KiB
Plaintext
/*!
|
|
* Copyright 2017 XGBoost contributors
|
|
*/
|
|
#pragma once
|
|
#include <thrust/random.h>
|
|
#include <cstdio>
|
|
#include <stdexcept>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "../common/random.h"
|
|
#include "param.h"
|
|
#include <cub/cub.cuh>
|
|
#include "../common/device_helpers.cuh"
|
|
|
|
namespace xgboost {
|
|
namespace tree {
|
|
|
|
struct GPUTrainingParam {
|
|
// minimum amount of hessian(weight) allowed in a child
|
|
float min_child_weight;
|
|
// L2 regularization factor
|
|
float reg_lambda;
|
|
// L1 regularization factor
|
|
float reg_alpha;
|
|
// maximum delta update we can add in weight estimation
|
|
// this parameter can be used to stabilize update
|
|
// default=0 means no constraint on weight delta
|
|
float max_delta_step;
|
|
|
|
__host__ __device__ GPUTrainingParam() {}
|
|
|
|
__host__ __device__ GPUTrainingParam(const TrainParam& param)
|
|
: min_child_weight(param.min_child_weight),
|
|
reg_lambda(param.reg_lambda),
|
|
reg_alpha(param.reg_alpha),
|
|
max_delta_step(param.max_delta_step) {}
|
|
};
|
|
|
|
typedef int node_id_t;
|
|
|
|
/** used to assign default id to a Node */
|
|
static const int UNUSED_NODE = -1;
|
|
|
|
/**
|
|
* @enum DefaultDirection node.cuh
|
|
* @brief Default direction to be followed in case of missing values
|
|
*/
|
|
enum DefaultDirection {
|
|
/** move to left child */
|
|
LeftDir = 0,
|
|
/** move to right child */
|
|
RightDir
|
|
};
|
|
|
|
struct DeviceDenseNode {
|
|
bst_gpair sum_gradients;
|
|
float root_gain;
|
|
float weight;
|
|
|
|
/** default direction for missing values */
|
|
DefaultDirection dir;
|
|
/** threshold value for comparison */
|
|
float fvalue;
|
|
/** \brief The feature index. */
|
|
int fidx;
|
|
/** node id (used as key for reduce/scan) */
|
|
node_id_t idx;
|
|
|
|
HOST_DEV_INLINE DeviceDenseNode()
|
|
: sum_gradients(),
|
|
root_gain(-FLT_MAX),
|
|
weight(-FLT_MAX),
|
|
dir(LeftDir),
|
|
fvalue(0.f),
|
|
fidx(UNUSED_NODE),
|
|
idx(UNUSED_NODE) {}
|
|
|
|
HOST_DEV_INLINE DeviceDenseNode(bst_gpair sum_gradients, node_id_t nidx,
|
|
const GPUTrainingParam& param)
|
|
: sum_gradients(sum_gradients),
|
|
dir(LeftDir),
|
|
fvalue(0.f),
|
|
fidx(UNUSED_NODE),
|
|
idx(nidx) {
|
|
this->root_gain = CalcGain(param, sum_gradients.grad, sum_gradients.hess);
|
|
this->weight = CalcWeight(param, sum_gradients.grad, sum_gradients.hess);
|
|
}
|
|
|
|
HOST_DEV_INLINE void SetSplit(float fvalue, int fidx, DefaultDirection dir) {
|
|
this->fvalue = fvalue;
|
|
this->fidx = fidx;
|
|
this->dir = dir;
|
|
}
|
|
|
|
/** Tells whether this node is part of the decision tree */
|
|
HOST_DEV_INLINE bool IsUnused() const { return (idx == UNUSED_NODE); }
|
|
|
|
/** Tells whether this node is a leaf of the decision tree */
|
|
HOST_DEV_INLINE bool IsLeaf() const {
|
|
return (!IsUnused() && (fidx == UNUSED_NODE));
|
|
}
|
|
};
|
|
|
|
template <typename gpair_t>
|
|
__device__ inline float device_calc_loss_chg(
|
|
const GPUTrainingParam& param, const gpair_t& scan, const gpair_t& missing,
|
|
const gpair_t& parent_sum, const float& parent_gain, bool missing_left) {
|
|
gpair_t left = scan;
|
|
|
|
if (missing_left) {
|
|
left += missing;
|
|
}
|
|
|
|
gpair_t right = parent_sum - left;
|
|
|
|
float left_gain = CalcGain(param, left.grad, left.hess);
|
|
float right_gain = CalcGain(param, right.grad, right.hess);
|
|
return left_gain + right_gain - parent_gain;
|
|
}
|
|
|
|
template <typename gpair_t>
|
|
__device__ float inline loss_chg_missing(const gpair_t& scan,
|
|
const gpair_t& missing,
|
|
const gpair_t& parent_sum,
|
|
const float& parent_gain,
|
|
const GPUTrainingParam& param,
|
|
bool& missing_left_out) { // NOLINT
|
|
float missing_left_loss =
|
|
device_calc_loss_chg(param, scan, missing, parent_sum, parent_gain, true);
|
|
float missing_right_loss = device_calc_loss_chg(
|
|
param, scan, missing, parent_sum, parent_gain, false);
|
|
|
|
if (missing_left_loss >= missing_right_loss) {
|
|
missing_left_out = true;
|
|
return missing_left_loss;
|
|
} else {
|
|
missing_left_out = false;
|
|
return missing_right_loss;
|
|
}
|
|
}
|
|
|
|
// Total number of nodes in tree, given depth
|
|
__host__ __device__ inline int n_nodes(int depth) {
|
|
return (1 << (depth + 1)) - 1;
|
|
}
|
|
|
|
// Number of nodes at this level of the tree
|
|
__host__ __device__ inline int n_nodes_level(int depth) { return 1 << depth; }
|
|
|
|
// Whether a node is currently being processed at current depth
|
|
__host__ __device__ inline bool is_active(int nidx, int depth) {
|
|
return nidx >= n_nodes(depth - 1);
|
|
}
|
|
|
|
__host__ __device__ inline int parent_nidx(int nidx) { return (nidx - 1) / 2; }
|
|
|
|
__host__ __device__ inline int left_child_nidx(int nidx) {
|
|
return nidx * 2 + 1;
|
|
}
|
|
|
|
__host__ __device__ inline int right_child_nidx(int nidx) {
|
|
return nidx * 2 + 2;
|
|
}
|
|
|
|
__host__ __device__ inline bool is_left_child(int nidx) {
|
|
return nidx % 2 == 1;
|
|
}
|
|
|
|
// Copy gpu dense representation of tree to xgboost sparse representation
|
|
inline void dense2sparse_tree(RegTree* p_tree,
|
|
const dh::dvec<DeviceDenseNode>& nodes,
|
|
const TrainParam& param) {
|
|
RegTree& tree = *p_tree;
|
|
std::vector<DeviceDenseNode> h_nodes = nodes.as_vector();
|
|
|
|
int nid = 0;
|
|
for (int gpu_nid = 0; gpu_nid < h_nodes.size(); gpu_nid++) {
|
|
const DeviceDenseNode& n = h_nodes[gpu_nid];
|
|
if (!n.IsUnused() && !n.IsLeaf()) {
|
|
tree.AddChilds(nid);
|
|
tree[nid].set_split(n.fidx, n.fvalue, n.dir == LeftDir);
|
|
tree.stat(nid).loss_chg = n.root_gain;
|
|
tree.stat(nid).base_weight = n.weight;
|
|
tree.stat(nid).sum_hess = n.sum_gradients.hess;
|
|
tree[tree[nid].cleft()].set_leaf(0);
|
|
tree[tree[nid].cright()].set_leaf(0);
|
|
nid++;
|
|
} else if (n.IsLeaf()) {
|
|
tree[nid].set_leaf(n.weight * param.learning_rate);
|
|
tree.stat(nid).sum_hess = n.sum_gradients.hess;
|
|
nid++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Random
|
|
*/
|
|
|
|
struct BernoulliRng {
|
|
float p;
|
|
int seed;
|
|
|
|
__host__ __device__ BernoulliRng(float p, int seed) : p(p), seed(seed) {}
|
|
|
|
__host__ __device__ bool operator()(const int i) const {
|
|
thrust::default_random_engine rng(seed);
|
|
thrust::uniform_real_distribution<float> dist;
|
|
rng.discard(i);
|
|
return dist(rng) <= p;
|
|
}
|
|
};
|
|
|
|
// Set gradient pair to 0 with p = 1 - subsample
|
|
inline void subsample_gpair(dh::dvec<bst_gpair>* p_gpair, float subsample,
|
|
int offset = 0) {
|
|
if (subsample == 1.0) {
|
|
return;
|
|
}
|
|
|
|
dh::dvec<bst_gpair>& gpair = *p_gpair;
|
|
|
|
auto d_gpair = gpair.data();
|
|
BernoulliRng rng(subsample, common::GlobalRandom()());
|
|
|
|
dh::launch_n(gpair.device_idx(), gpair.size(), [=] __device__(int i) {
|
|
if (!rng(i + offset)) {
|
|
d_gpair[i] = bst_gpair();
|
|
}
|
|
});
|
|
}
|
|
|
|
inline std::vector<int> col_sample(std::vector<int> features, float colsample) {
|
|
CHECK_GT(features.size(), 0);
|
|
int n = std::max(1, static_cast<int>(colsample * features.size()));
|
|
|
|
std::shuffle(features.begin(), features.end(), common::GlobalRandom());
|
|
features.resize(n);
|
|
|
|
return features;
|
|
}
|
|
} // namespace tree
|
|
} // namespace xgboost
|