247 lines
10 KiB
Plaintext
247 lines
10 KiB
Plaintext
#include <gtest/gtest.h>
|
|
#include "../../../../src/tree/gpu_hist/evaluate_splits.cuh"
|
|
#include "../../helpers.h"
|
|
#include "../../histogram_helpers.h"
|
|
|
|
namespace xgboost {
|
|
namespace tree {
|
|
namespace {
|
|
auto ZeroParam() {
|
|
auto args = Args{{"min_child_weight", "0"},
|
|
{"lambda", "0"}};
|
|
TrainParam tparam;
|
|
tparam.UpdateAllowUnknown(args);
|
|
return tparam;
|
|
}
|
|
} // anonymous namespace
|
|
|
|
TEST(GpuHist, EvaluateSingleSplit) {
|
|
thrust::device_vector<DeviceSplitCandidate> out_splits(1);
|
|
GradientPair parent_sum(0.0, 1.0);
|
|
TrainParam tparam = ZeroParam();
|
|
GPUTrainingParam param{tparam};
|
|
|
|
thrust::device_vector<bst_feature_t> feature_set =
|
|
std::vector<bst_feature_t>{0, 1};
|
|
thrust::device_vector<uint32_t> feature_segments =
|
|
std::vector<bst_row_t>{0, 2, 4};
|
|
thrust::device_vector<float> feature_values =
|
|
std::vector<float>{1.0, 2.0, 11.0, 12.0};
|
|
thrust::device_vector<float> feature_min_values =
|
|
std::vector<float>{0.0, 0.0};
|
|
// Setup gradients so that second feature gets higher gain
|
|
thrust::device_vector<GradientPair> feature_histogram =
|
|
std::vector<GradientPair>{
|
|
{-0.5, 0.5}, {0.5, 0.5}, {-1.0, 0.5}, {1.0, 0.5}};
|
|
thrust::device_vector<int> monotonic_constraints(feature_set.size(), 0);
|
|
EvaluateSplitInputs<GradientPair> input{1,
|
|
parent_sum,
|
|
param,
|
|
dh::ToSpan(feature_set),
|
|
dh::ToSpan(feature_segments),
|
|
dh::ToSpan(feature_values),
|
|
dh::ToSpan(feature_min_values),
|
|
dh::ToSpan(feature_histogram)};
|
|
TreeEvaluator tree_evaluator(tparam, feature_min_values.size(), 0);
|
|
auto evaluator = tree_evaluator.GetEvaluator<GPUTrainingParam>();
|
|
EvaluateSingleSplit(dh::ToSpan(out_splits), evaluator, input);
|
|
|
|
DeviceSplitCandidate result = out_splits[0];
|
|
EXPECT_EQ(result.findex, 1);
|
|
EXPECT_EQ(result.fvalue, 11.0);
|
|
EXPECT_FLOAT_EQ(result.left_sum.GetGrad() + result.right_sum.GetGrad(),
|
|
parent_sum.GetGrad());
|
|
EXPECT_FLOAT_EQ(result.left_sum.GetHess() + result.right_sum.GetHess(),
|
|
parent_sum.GetHess());
|
|
}
|
|
|
|
TEST(GpuHist, EvaluateSingleSplitMissing) {
|
|
thrust::device_vector<DeviceSplitCandidate> out_splits(1);
|
|
GradientPair parent_sum(1.0, 1.5);
|
|
TrainParam tparam = ZeroParam();
|
|
GPUTrainingParam param{tparam};
|
|
|
|
thrust::device_vector<bst_feature_t> feature_set =
|
|
std::vector<bst_feature_t>{0};
|
|
thrust::device_vector<uint32_t> feature_segments =
|
|
std::vector<bst_row_t>{0, 2};
|
|
thrust::device_vector<float> feature_values = std::vector<float>{1.0, 2.0};
|
|
thrust::device_vector<float> feature_min_values = std::vector<float>{0.0};
|
|
thrust::device_vector<GradientPair> feature_histogram =
|
|
std::vector<GradientPair>{{-0.5, 0.5}, {0.5, 0.5}};
|
|
thrust::device_vector<int> monotonic_constraints(feature_set.size(), 0);
|
|
EvaluateSplitInputs<GradientPair> input{1,
|
|
parent_sum,
|
|
param,
|
|
dh::ToSpan(feature_set),
|
|
dh::ToSpan(feature_segments),
|
|
dh::ToSpan(feature_values),
|
|
dh::ToSpan(feature_min_values),
|
|
dh::ToSpan(feature_histogram)};
|
|
|
|
TreeEvaluator tree_evaluator(tparam, feature_set.size(), 0);
|
|
auto evaluator = tree_evaluator.GetEvaluator<GPUTrainingParam>();
|
|
EvaluateSingleSplit(dh::ToSpan(out_splits), evaluator, input);
|
|
|
|
DeviceSplitCandidate result = out_splits[0];
|
|
EXPECT_EQ(result.findex, 0);
|
|
EXPECT_EQ(result.fvalue, 1.0);
|
|
EXPECT_EQ(result.dir, kRightDir);
|
|
EXPECT_EQ(result.left_sum, GradientPair(-0.5, 0.5));
|
|
EXPECT_EQ(result.right_sum, GradientPair(1.5, 1.0));
|
|
}
|
|
|
|
TEST(GpuHist, EvaluateSingleSplitEmpty) {
|
|
DeviceSplitCandidate nonzeroed;
|
|
nonzeroed.findex = 1;
|
|
nonzeroed.loss_chg = 1.0;
|
|
|
|
thrust::device_vector<DeviceSplitCandidate> out_split(1);
|
|
out_split[0] = nonzeroed;
|
|
|
|
TrainParam tparam = ZeroParam();
|
|
TreeEvaluator tree_evaluator(tparam, 1, 0);
|
|
auto evaluator = tree_evaluator.GetEvaluator<GPUTrainingParam>();
|
|
EvaluateSingleSplit(dh::ToSpan(out_split), evaluator,
|
|
EvaluateSplitInputs<GradientPair>{});
|
|
|
|
DeviceSplitCandidate result = out_split[0];
|
|
EXPECT_EQ(result.findex, -1);
|
|
EXPECT_LT(result.loss_chg, 0.0f);
|
|
}
|
|
|
|
// Feature 0 has a better split, but the algorithm must select feature 1
|
|
TEST(GpuHist, EvaluateSingleSplitFeatureSampling) {
|
|
thrust::device_vector<DeviceSplitCandidate> out_splits(1);
|
|
GradientPair parent_sum(0.0, 1.0);
|
|
TrainParam tparam = ZeroParam();
|
|
tparam.UpdateAllowUnknown(Args{});
|
|
GPUTrainingParam param{tparam};
|
|
|
|
thrust::device_vector<bst_feature_t> feature_set =
|
|
std::vector<bst_feature_t>{1};
|
|
thrust::device_vector<uint32_t> feature_segments =
|
|
std::vector<bst_row_t>{0, 2, 4};
|
|
thrust::device_vector<float> feature_values =
|
|
std::vector<float>{1.0, 2.0, 11.0, 12.0};
|
|
thrust::device_vector<float> feature_min_values =
|
|
std::vector<float>{0.0, 10.0};
|
|
thrust::device_vector<GradientPair> feature_histogram =
|
|
std::vector<GradientPair>{
|
|
{-10.0, 0.5}, {10.0, 0.5}, {-0.5, 0.5}, {0.5, 0.5}};
|
|
thrust::device_vector<int> monotonic_constraints(2, 0);
|
|
EvaluateSplitInputs<GradientPair> input{1,
|
|
parent_sum,
|
|
param,
|
|
dh::ToSpan(feature_set),
|
|
dh::ToSpan(feature_segments),
|
|
dh::ToSpan(feature_values),
|
|
dh::ToSpan(feature_min_values),
|
|
dh::ToSpan(feature_histogram)};
|
|
|
|
TreeEvaluator tree_evaluator(tparam, feature_min_values.size(), 0);
|
|
auto evaluator = tree_evaluator.GetEvaluator<GPUTrainingParam>();
|
|
EvaluateSingleSplit(dh::ToSpan(out_splits), evaluator, input);
|
|
|
|
DeviceSplitCandidate result = out_splits[0];
|
|
EXPECT_EQ(result.findex, 1);
|
|
EXPECT_EQ(result.fvalue, 11.0);
|
|
EXPECT_EQ(result.left_sum, GradientPair(-0.5, 0.5));
|
|
EXPECT_EQ(result.right_sum, GradientPair(0.5, 0.5));
|
|
}
|
|
|
|
// Features 0 and 1 have identical gain, the algorithm must select 0
|
|
TEST(GpuHist, EvaluateSingleSplitBreakTies) {
|
|
thrust::device_vector<DeviceSplitCandidate> out_splits(1);
|
|
GradientPair parent_sum(0.0, 1.0);
|
|
TrainParam tparam = ZeroParam();
|
|
tparam.UpdateAllowUnknown(Args{});
|
|
GPUTrainingParam param{tparam};
|
|
|
|
thrust::device_vector<bst_feature_t> feature_set =
|
|
std::vector<bst_feature_t>{0, 1};
|
|
thrust::device_vector<uint32_t> feature_segments =
|
|
std::vector<bst_row_t>{0, 2, 4};
|
|
thrust::device_vector<float> feature_values =
|
|
std::vector<float>{1.0, 2.0, 11.0, 12.0};
|
|
thrust::device_vector<float> feature_min_values =
|
|
std::vector<float>{0.0, 10.0};
|
|
thrust::device_vector<GradientPair> feature_histogram =
|
|
std::vector<GradientPair>{
|
|
{-0.5, 0.5}, {0.5, 0.5}, {-0.5, 0.5}, {0.5, 0.5}};
|
|
thrust::device_vector<int> monotonic_constraints(2, 0);
|
|
EvaluateSplitInputs<GradientPair> input{1,
|
|
parent_sum,
|
|
param,
|
|
dh::ToSpan(feature_set),
|
|
dh::ToSpan(feature_segments),
|
|
dh::ToSpan(feature_values),
|
|
dh::ToSpan(feature_min_values),
|
|
dh::ToSpan(feature_histogram)};
|
|
|
|
TreeEvaluator tree_evaluator(tparam, feature_min_values.size(), 0);
|
|
auto evaluator = tree_evaluator.GetEvaluator<GPUTrainingParam>();
|
|
EvaluateSingleSplit(dh::ToSpan(out_splits), evaluator, input);
|
|
|
|
DeviceSplitCandidate result = out_splits[0];
|
|
EXPECT_EQ(result.findex, 0);
|
|
EXPECT_EQ(result.fvalue, 1.0);
|
|
}
|
|
|
|
TEST(GpuHist, EvaluateSplits) {
|
|
thrust::device_vector<DeviceSplitCandidate> out_splits(2);
|
|
GradientPair parent_sum(0.0, 1.0);
|
|
TrainParam tparam = ZeroParam();
|
|
tparam.UpdateAllowUnknown(Args{});
|
|
GPUTrainingParam param{tparam};
|
|
|
|
thrust::device_vector<bst_feature_t> feature_set =
|
|
std::vector<bst_feature_t>{0, 1};
|
|
thrust::device_vector<uint32_t> feature_segments =
|
|
std::vector<bst_row_t>{0, 2, 4};
|
|
thrust::device_vector<float> feature_values =
|
|
std::vector<float>{1.0, 2.0, 11.0, 12.0};
|
|
thrust::device_vector<float> feature_min_values =
|
|
std::vector<float>{0.0, 0.0};
|
|
thrust::device_vector<GradientPair> feature_histogram_left =
|
|
std::vector<GradientPair>{
|
|
{-0.5, 0.5}, {0.5, 0.5}, {-1.0, 0.5}, {1.0, 0.5}};
|
|
thrust::device_vector<GradientPair> feature_histogram_right =
|
|
std::vector<GradientPair>{
|
|
{-1.0, 0.5}, {1.0, 0.5}, {-0.5, 0.5}, {0.5, 0.5}};
|
|
thrust::device_vector<int> monotonic_constraints(feature_set.size(), 0);
|
|
EvaluateSplitInputs<GradientPair> input_left{
|
|
1,
|
|
parent_sum,
|
|
param,
|
|
dh::ToSpan(feature_set),
|
|
dh::ToSpan(feature_segments),
|
|
dh::ToSpan(feature_values),
|
|
dh::ToSpan(feature_min_values),
|
|
dh::ToSpan(feature_histogram_left)};
|
|
EvaluateSplitInputs<GradientPair> input_right{
|
|
2,
|
|
parent_sum,
|
|
param,
|
|
dh::ToSpan(feature_set),
|
|
dh::ToSpan(feature_segments),
|
|
dh::ToSpan(feature_values),
|
|
dh::ToSpan(feature_min_values),
|
|
dh::ToSpan(feature_histogram_right)};
|
|
|
|
TreeEvaluator tree_evaluator(tparam, feature_min_values.size(), 0);
|
|
auto evaluator = tree_evaluator.GetEvaluator<GPUTrainingParam>();
|
|
EvaluateSplits(dh::ToSpan(out_splits), evaluator, input_left, input_right);
|
|
|
|
DeviceSplitCandidate result_left = out_splits[0];
|
|
EXPECT_EQ(result_left.findex, 1);
|
|
EXPECT_EQ(result_left.fvalue, 11.0);
|
|
|
|
DeviceSplitCandidate result_right = out_splits[1];
|
|
EXPECT_EQ(result_right.findex, 0);
|
|
EXPECT_EQ(result_right.fvalue, 1.0);
|
|
}
|
|
|
|
} // namespace tree
|
|
} // namespace xgboost
|