xgboost/tests/cpp/predictor/test_cpu_predictor.cc
Jiaming Yuan 75b8c22b0b
Fix prediction heuristic (#5955)
* Relax check for prediction.
* Relax test in spark test.
* Add tests in C++.
2020-07-29 19:24:07 +08:00

173 lines
6.0 KiB
C++

/*!
* Copyright 2017-2020 XGBoost contributors
*/
#include <dmlc/filesystem.h>
#include <gtest/gtest.h>
#include <xgboost/predictor.h>
#include "../helpers.h"
#include "test_predictor.h"
#include "../../../src/gbm/gbtree_model.h"
#include "../../../src/data/adapter.h"
namespace xgboost {
TEST(CpuPredictor, Basic) {
auto lparam = CreateEmptyGenericParam(GPUIDX);
std::unique_ptr<Predictor> cpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor", &lparam));
int kRows = 5;
int kCols = 5;
LearnerModelParam param;
param.num_feature = kCols;
param.base_score = 0.0;
param.num_output_group = 1;
gbm::GBTreeModel model = CreateTestModel(&param);
auto dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
// Test predict batch
PredictionCacheEntry out_predictions;
cpu_predictor->PredictBatch(dmat.get(), &out_predictions, model, 0);
ASSERT_EQ(model.trees.size(), out_predictions.version);
std::vector<float>& out_predictions_h = out_predictions.predictions.HostVector();
for (size_t i = 0; i < out_predictions.predictions.Size(); i++) {
ASSERT_EQ(out_predictions_h[i], 1.5);
}
// Test predict instance
auto const &batch = *dmat->GetBatches<xgboost::SparsePage>().begin();
for (size_t i = 0; i < batch.Size(); i++) {
std::vector<float> instance_out_predictions;
cpu_predictor->PredictInstance(batch[i], &instance_out_predictions, model);
ASSERT_EQ(instance_out_predictions[0], 1.5);
}
// Test predict leaf
std::vector<float> leaf_out_predictions;
cpu_predictor->PredictLeaf(dmat.get(), &leaf_out_predictions, model);
for (auto v : leaf_out_predictions) {
ASSERT_EQ(v, 0);
}
// Test predict contribution
std::vector<float> out_contribution;
cpu_predictor->PredictContribution(dmat.get(), &out_contribution, model);
ASSERT_EQ(out_contribution.size(), kRows * (kCols + 1));
for (size_t i = 0; i < out_contribution.size(); ++i) {
auto const& contri = out_contribution[i];
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
if ((i+1) % (kCols+1) == 0) {
ASSERT_EQ(out_contribution.back(), 1.5f);
} else {
ASSERT_EQ(contri, 0);
}
}
// Test predict contribution (approximate method)
cpu_predictor->PredictContribution(dmat.get(), &out_contribution, model, 0, nullptr, true);
for (size_t i = 0; i < out_contribution.size(); ++i) {
auto const& contri = out_contribution[i];
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
if ((i+1) % (kCols+1) == 0) {
ASSERT_EQ(out_contribution.back(), 1.5f);
} else {
ASSERT_EQ(contri, 0);
}
}
}
TEST(CpuPredictor, ExternalMemory) {
dmlc::TemporaryDirectory tmpdir;
std::string filename = tmpdir.path + "/big.libsvm";
std::unique_ptr<DMatrix> dmat = CreateSparsePageDMatrix(12, 64, filename);
auto lparam = CreateEmptyGenericParam(GPUIDX);
std::unique_ptr<Predictor> cpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor", &lparam));
LearnerModelParam param;
param.base_score = 0;
param.num_feature = dmat->Info().num_col_;
param.num_output_group = 1;
gbm::GBTreeModel model = CreateTestModel(&param);
// Test predict batch
PredictionCacheEntry out_predictions;
cpu_predictor->PredictBatch(dmat.get(), &out_predictions, model, 0);
std::vector<float> &out_predictions_h = out_predictions.predictions.HostVector();
ASSERT_EQ(out_predictions.predictions.Size(), dmat->Info().num_row_);
for (const auto& v : out_predictions_h) {
ASSERT_EQ(v, 1.5);
}
// Test predict leaf
std::vector<float> leaf_out_predictions;
cpu_predictor->PredictLeaf(dmat.get(), &leaf_out_predictions, model);
ASSERT_EQ(leaf_out_predictions.size(), dmat->Info().num_row_);
for (const auto& v : leaf_out_predictions) {
ASSERT_EQ(v, 0);
}
// Test predict contribution
std::vector<float> out_contribution;
cpu_predictor->PredictContribution(dmat.get(), &out_contribution, model);
ASSERT_EQ(out_contribution.size(), dmat->Info().num_row_ * (dmat->Info().num_col_ + 1));
for (size_t i = 0; i < out_contribution.size(); ++i) {
auto const& contri = out_contribution[i];
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
if ((i + 1) % (dmat->Info().num_col_ + 1) == 0) {
ASSERT_EQ(out_contribution.back(), 1.5f);
} else {
ASSERT_EQ(contri, 0);
}
}
// Test predict contribution (approximate method)
std::vector<float> out_contribution_approximate;
cpu_predictor->PredictContribution(dmat.get(), &out_contribution_approximate, model, 0, nullptr, true);
ASSERT_EQ(out_contribution_approximate.size(),
dmat->Info().num_row_ * (dmat->Info().num_col_ + 1));
for (size_t i = 0; i < out_contribution.size(); ++i) {
auto const& contri = out_contribution[i];
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
if ((i + 1) % (dmat->Info().num_col_ + 1) == 0) {
ASSERT_EQ(out_contribution.back(), 1.5f);
} else {
ASSERT_EQ(contri, 0);
}
}
}
TEST(CpuPredictor, InplacePredict) {
bst_row_t constexpr kRows{128};
bst_feature_t constexpr kCols{64};
auto gen = RandomDataGenerator{kRows, kCols, 0.5}.Device(-1);
{
HostDeviceVector<float> data;
gen.GenerateDense(&data);
ASSERT_EQ(data.Size(), kRows * kCols);
std::shared_ptr<data::DenseAdapter> x{
new data::DenseAdapter(data.HostPointer(), kRows, kCols)};
TestInplacePrediction(x, "cpu_predictor", kRows, kCols, -1);
}
{
HostDeviceVector<float> data;
HostDeviceVector<bst_row_t> rptrs;
HostDeviceVector<bst_feature_t> columns;
gen.GenerateCSR(&data, &rptrs, &columns);
std::shared_ptr<data::CSRAdapter> x{new data::CSRAdapter(
rptrs.HostPointer(), columns.HostPointer(), data.HostPointer(), kRows,
data.Size(), kCols)};
TestInplacePrediction(x, "cpu_predictor", kRows, kCols, -1);
}
}
TEST(CpuPredictor, LesserFeatures) {
TestPredictionWithLesserFeatures("cpu_predictor");
}
} // namespace xgboost