Philip Hyunsu Cho 9adb812a0a
RMM integration plugin (#5873)
* [CI] Add RMM as an optional dependency

* Replace caching allocator with pool allocator from RMM

* Revert "Replace caching allocator with pool allocator from RMM"

This reverts commit e15845d4e72e890c2babe31a988b26503a7d9038.

* Use rmm::mr::get_default_resource()

* Try setting default resource (doesn't work yet)

* Allocate pool_mr in the heap

* Prevent leaking pool_mr handle

* Separate EXPECT_DEATH() in separate test suite suffixed DeathTest

* Turn off death tests for RMM

* Address reviewer's feedback

* Prevent leaking of cuda_mr

* Fix Jenkinsfile syntax

* Remove unnecessary function in Jenkinsfile

* [CI] Install NCCL into RMM container

* Run Python tests

* Try building with RMM, CUDA 10.0

* Do not use RMM for CUDA 10.0 target

* Actually test for test_rmm flag

* Fix TestPythonGPU

* Use CNMeM allocator, since pool allocator doesn't yet support multiGPU

* Use 10.0 container to build RMM-enabled XGBoost

* Revert "Use 10.0 container to build RMM-enabled XGBoost"

This reverts commit 789021fa31112e25b683aef39fff375403060141.

* Fix Jenkinsfile

* [CI] Assign larger /dev/shm to NCCL

* Use 10.2 artifact to run multi-GPU Python tests

* Add CUDA 10.0 -> 11.0 cross-version test; remove CUDA 10.0 target

* Rename Conda env rmm_test -> gpu_test

* Use env var to opt into CNMeM pool for C++ tests

* Use identical CUDA version for RMM builds and tests

* Use Pytest fixtures to enable RMM pool in Python tests

* Move RMM to plugin/CMakeLists.txt; use PLUGIN_RMM

* Use per-device MR; use command arg in gtest

* Set CMake prefix path to use Conda env

* Use 0.15 nightly version of RMM

* Remove unnecessary header

* Fix a unit test when cudf is missing

* Add RMM demos

* Remove print()

* Use HostDeviceVector in GPU predictor

* Simplify pytest setup; use LocalCUDACluster fixture

* Address reviewers' commments

Co-authored-by: Hyunsu Cho <chohyu01@cs.wasshington.edu>
2020-08-12 01:26:02 -07:00
..
2020-08-12 01:26:02 -07:00

Using XGBoost with RAPIDS Memory Manager (RMM) plugin (EXPERIMENTAL)

RAPIDS Memory Manager (RMM) library provides a collection of efficient memory allocators for NVIDIA GPUs. It is now possible to use XGBoost with memory allocators provided by RMM, by enabling the RMM integration plugin.

The demos in this directory highlights one RMM allocator in particular: the pool sub-allocator. This allocator addresses the slow speed of cudaMalloc() by allocating a large chunk of memory upfront. Subsequent allocations will draw from the pool of already allocated memory and thus avoid the overhead of calling cudaMalloc() directly. See this GTC talk slides for more details.

Before running the demos, ensure that XGBoost is compiled with the RMM plugin enabled. To do this, run CMake with option -DPLUGIN_RMM=ON (-DUSE_CUDA=ON also required):

cmake .. -DUSE_CUDA=ON -DUSE_NCCL=ON -DPLUGIN_RMM=ON
make -j4

CMake will attempt to locate the RMM library in your build environment. You may choose to build RMM from the source, or install it using the Conda package manager. If CMake cannot find RMM, you should specify the location of RMM with the CMake prefix:

# If using Conda:
cmake .. -DUSE_CUDA=ON -DUSE_NCCL=ON -DPLUGIN_RMM=ON -DCMAKE_PREFIX_PATH=$CONDA_PREFIX
# If using RMM installed with a custom location
cmake .. -DUSE_CUDA=ON -DUSE_NCCL=ON -DPLUGIN_RMM=ON -DCMAKE_PREFIX_PATH=/path/to/rmm