xgboost/tests/cpp/tree/gpu_hist/test_row_partitioner.cu
Jiaming Yuan 142a208a90
Fix compiler warnings. (#8022)
- Remove/fix unused parameters
- Remove deprecated code in rabit.
- Update dmlc-core.
2022-06-22 21:29:10 +08:00

178 lines
5.1 KiB
Plaintext

/*!
* Copyright 2019-2022 by XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <algorithm>
#include <vector>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/sequence.h>
#include "../../../../src/tree/gpu_hist/row_partitioner.cuh"
#include "../../helpers.h"
#include "xgboost/base.h"
#include "xgboost/generic_parameters.h"
#include "xgboost/task.h"
#include "xgboost/tree_model.h"
namespace xgboost {
namespace tree {
void TestSortPosition(const std::vector<int>& position_in, int left_idx,
int right_idx) {
dh::safe_cuda(cudaSetDevice(0));
std::vector<int64_t> left_count = {
std::count(position_in.begin(), position_in.end(), left_idx)};
dh::caching_device_vector<int64_t> d_left_count = left_count;
dh::caching_device_vector<int> position = position_in;
dh::caching_device_vector<int> position_out(position.size());
dh::caching_device_vector<RowPartitioner::RowIndexT> ridx(position.size());
thrust::sequence(ridx.begin(), ridx.end());
dh::caching_device_vector<RowPartitioner::RowIndexT> ridx_out(ridx.size());
RowPartitioner rp(0,10);
rp.SortPosition(
common::Span<int>(position.data().get(), position.size()),
common::Span<int>(position_out.data().get(), position_out.size()),
common::Span<RowPartitioner::RowIndexT>(ridx.data().get(), ridx.size()),
common::Span<RowPartitioner::RowIndexT>(ridx_out.data().get(), ridx_out.size()), left_idx,
right_idx, d_left_count.data().get(), nullptr);
thrust::host_vector<int> position_result = position_out;
thrust::host_vector<int> ridx_result = ridx_out;
// Check position is sorted
EXPECT_TRUE(std::is_sorted(position_result.begin(), position_result.end()));
// Check row indices are sorted inside left and right segment
EXPECT_TRUE(
std::is_sorted(ridx_result.begin(), ridx_result.begin() + left_count[0]));
EXPECT_TRUE(
std::is_sorted(ridx_result.begin() + left_count[0], ridx_result.end()));
// Check key value pairs are the same
for (auto i = 0ull; i < ridx_result.size(); i++) {
EXPECT_EQ(position_result[i], position_in[ridx_result[i]]);
}
}
TEST(GpuHist, SortPosition) {
TestSortPosition({1, 2, 1, 2, 1}, 1, 2);
TestSortPosition({1, 1, 1, 1}, 1, 2);
TestSortPosition({2, 2, 2, 2}, 1, 2);
TestSortPosition({1, 2, 1, 2, 3}, 1, 2);
}
void TestUpdatePosition() {
const int kNumRows = 10;
RowPartitioner rp(0, kNumRows);
auto rows = rp.GetRowsHost(0);
EXPECT_EQ(rows.size(), kNumRows);
for (auto i = 0ull; i < kNumRows; i++) {
EXPECT_EQ(rows[i], i);
}
// Send the first five training instances to the right node
// and the second 5 to the left node
rp.UpdatePosition(0, 1, 2,
[=] __device__(RowPartitioner::RowIndexT ridx) {
if (ridx > 4) {
return 1;
}
else {
return 2;
}
});
rows = rp.GetRowsHost(1);
for (auto r : rows) {
EXPECT_GT(r, 4);
}
rows = rp.GetRowsHost(2);
for (auto r : rows) {
EXPECT_LT(r, 5);
}
// Split the left node again
rp.UpdatePosition(1, 3, 4, [=]__device__(RowPartitioner::RowIndexT ridx)
{
if (ridx < 7) {
return 3
;
}
return 4;
});
EXPECT_EQ(rp.GetRows(3).size(), 2);
EXPECT_EQ(rp.GetRows(4).size(), 3);
// Check position is as expected
EXPECT_EQ(rp.GetPositionHost(), std::vector<bst_node_t>({3,3,4,4,4,2,2,2,2,2}));
}
TEST(RowPartitioner, Basic) { TestUpdatePosition(); }
void TestFinalise() {
const int kNumRows = 10;
ObjInfo task{ObjInfo::kRegression, false, false};
HostDeviceVector<bst_node_t> position;
Context ctx;
ctx.gpu_id = 0;
{
RowPartitioner rp(0, kNumRows);
rp.FinalisePosition(
&ctx, task, &position,
[=] __device__(RowPartitioner::RowIndexT ridx, int position) { return 7; },
[] XGBOOST_DEVICE(size_t) { return false; });
auto position = rp.GetPositionHost();
for (auto p : position) {
EXPECT_EQ(p, 7);
}
}
/**
* Test for sampling.
*/
dh::device_vector<float> hess(kNumRows);
for (size_t i = 0; i < hess.size(); ++i) {
// removed rows, 0, 3, 6, 9
if (i % 3 == 0) {
hess[i] = 0;
} else {
hess[i] = i;
}
}
auto d_hess = dh::ToSpan(hess);
RowPartitioner rp(0, kNumRows);
rp.FinalisePosition(
&ctx, task, &position,
[] __device__(RowPartitioner::RowIndexT ridx, bst_node_t position) {
return ridx % 2 == 0 ? 1 : 2;
},
[d_hess] __device__(size_t ridx) { return d_hess[ridx] - 0.f == 0.f; });
auto const& h_position = position.ConstHostVector();
for (size_t ridx = 0; ridx < h_position.size(); ++ridx) {
if (ridx % 3 == 0) {
ASSERT_LT(h_position[ridx], 0);
} else {
ASSERT_EQ(h_position[ridx], ridx % 2 == 0 ? 1 : 2);
}
}
}
TEST(RowPartitioner, Finalise) { TestFinalise(); }
void TestIncorrectRow() {
RowPartitioner rp(0, 1);
rp.UpdatePosition(0, 1, 2, [=]__device__ (RowPartitioner::RowIndexT ridx)
{
return 4; // This is not the left branch or the right branch
});
}
TEST(RowPartitionerDeathTest, IncorrectRow) {
ASSERT_DEATH({ TestIncorrectRow(); },".*");
}
} // namespace tree
} // namespace xgboost