178 lines
5.1 KiB
Plaintext
178 lines
5.1 KiB
Plaintext
/*!
|
|
* Copyright 2019-2022 by XGBoost Contributors
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
#include <thrust/device_vector.h>
|
|
#include <thrust/host_vector.h>
|
|
#include <thrust/sequence.h>
|
|
|
|
#include "../../../../src/tree/gpu_hist/row_partitioner.cuh"
|
|
#include "../../helpers.h"
|
|
#include "xgboost/base.h"
|
|
#include "xgboost/generic_parameters.h"
|
|
#include "xgboost/task.h"
|
|
#include "xgboost/tree_model.h"
|
|
|
|
namespace xgboost {
|
|
namespace tree {
|
|
|
|
void TestSortPosition(const std::vector<int>& position_in, int left_idx,
|
|
int right_idx) {
|
|
dh::safe_cuda(cudaSetDevice(0));
|
|
std::vector<int64_t> left_count = {
|
|
std::count(position_in.begin(), position_in.end(), left_idx)};
|
|
dh::caching_device_vector<int64_t> d_left_count = left_count;
|
|
dh::caching_device_vector<int> position = position_in;
|
|
dh::caching_device_vector<int> position_out(position.size());
|
|
|
|
dh::caching_device_vector<RowPartitioner::RowIndexT> ridx(position.size());
|
|
thrust::sequence(ridx.begin(), ridx.end());
|
|
dh::caching_device_vector<RowPartitioner::RowIndexT> ridx_out(ridx.size());
|
|
RowPartitioner rp(0,10);
|
|
rp.SortPosition(
|
|
common::Span<int>(position.data().get(), position.size()),
|
|
common::Span<int>(position_out.data().get(), position_out.size()),
|
|
common::Span<RowPartitioner::RowIndexT>(ridx.data().get(), ridx.size()),
|
|
common::Span<RowPartitioner::RowIndexT>(ridx_out.data().get(), ridx_out.size()), left_idx,
|
|
right_idx, d_left_count.data().get(), nullptr);
|
|
thrust::host_vector<int> position_result = position_out;
|
|
thrust::host_vector<int> ridx_result = ridx_out;
|
|
|
|
// Check position is sorted
|
|
EXPECT_TRUE(std::is_sorted(position_result.begin(), position_result.end()));
|
|
// Check row indices are sorted inside left and right segment
|
|
EXPECT_TRUE(
|
|
std::is_sorted(ridx_result.begin(), ridx_result.begin() + left_count[0]));
|
|
EXPECT_TRUE(
|
|
std::is_sorted(ridx_result.begin() + left_count[0], ridx_result.end()));
|
|
|
|
// Check key value pairs are the same
|
|
for (auto i = 0ull; i < ridx_result.size(); i++) {
|
|
EXPECT_EQ(position_result[i], position_in[ridx_result[i]]);
|
|
}
|
|
}
|
|
TEST(GpuHist, SortPosition) {
|
|
TestSortPosition({1, 2, 1, 2, 1}, 1, 2);
|
|
TestSortPosition({1, 1, 1, 1}, 1, 2);
|
|
TestSortPosition({2, 2, 2, 2}, 1, 2);
|
|
TestSortPosition({1, 2, 1, 2, 3}, 1, 2);
|
|
}
|
|
|
|
void TestUpdatePosition() {
|
|
const int kNumRows = 10;
|
|
RowPartitioner rp(0, kNumRows);
|
|
auto rows = rp.GetRowsHost(0);
|
|
EXPECT_EQ(rows.size(), kNumRows);
|
|
for (auto i = 0ull; i < kNumRows; i++) {
|
|
EXPECT_EQ(rows[i], i);
|
|
}
|
|
// Send the first five training instances to the right node
|
|
// and the second 5 to the left node
|
|
rp.UpdatePosition(0, 1, 2,
|
|
[=] __device__(RowPartitioner::RowIndexT ridx) {
|
|
if (ridx > 4) {
|
|
return 1;
|
|
}
|
|
else {
|
|
return 2;
|
|
}
|
|
});
|
|
rows = rp.GetRowsHost(1);
|
|
for (auto r : rows) {
|
|
EXPECT_GT(r, 4);
|
|
}
|
|
rows = rp.GetRowsHost(2);
|
|
for (auto r : rows) {
|
|
EXPECT_LT(r, 5);
|
|
}
|
|
|
|
// Split the left node again
|
|
rp.UpdatePosition(1, 3, 4, [=]__device__(RowPartitioner::RowIndexT ridx)
|
|
{
|
|
if (ridx < 7) {
|
|
return 3
|
|
;
|
|
}
|
|
return 4;
|
|
});
|
|
EXPECT_EQ(rp.GetRows(3).size(), 2);
|
|
EXPECT_EQ(rp.GetRows(4).size(), 3);
|
|
// Check position is as expected
|
|
EXPECT_EQ(rp.GetPositionHost(), std::vector<bst_node_t>({3,3,4,4,4,2,2,2,2,2}));
|
|
}
|
|
|
|
TEST(RowPartitioner, Basic) { TestUpdatePosition(); }
|
|
|
|
void TestFinalise() {
|
|
const int kNumRows = 10;
|
|
|
|
ObjInfo task{ObjInfo::kRegression, false, false};
|
|
HostDeviceVector<bst_node_t> position;
|
|
Context ctx;
|
|
ctx.gpu_id = 0;
|
|
|
|
{
|
|
RowPartitioner rp(0, kNumRows);
|
|
rp.FinalisePosition(
|
|
&ctx, task, &position,
|
|
[=] __device__(RowPartitioner::RowIndexT ridx, int position) { return 7; },
|
|
[] XGBOOST_DEVICE(size_t) { return false; });
|
|
|
|
auto position = rp.GetPositionHost();
|
|
for (auto p : position) {
|
|
EXPECT_EQ(p, 7);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Test for sampling.
|
|
*/
|
|
dh::device_vector<float> hess(kNumRows);
|
|
for (size_t i = 0; i < hess.size(); ++i) {
|
|
// removed rows, 0, 3, 6, 9
|
|
if (i % 3 == 0) {
|
|
hess[i] = 0;
|
|
} else {
|
|
hess[i] = i;
|
|
}
|
|
}
|
|
|
|
auto d_hess = dh::ToSpan(hess);
|
|
|
|
RowPartitioner rp(0, kNumRows);
|
|
rp.FinalisePosition(
|
|
&ctx, task, &position,
|
|
[] __device__(RowPartitioner::RowIndexT ridx, bst_node_t position) {
|
|
return ridx % 2 == 0 ? 1 : 2;
|
|
},
|
|
[d_hess] __device__(size_t ridx) { return d_hess[ridx] - 0.f == 0.f; });
|
|
|
|
auto const& h_position = position.ConstHostVector();
|
|
for (size_t ridx = 0; ridx < h_position.size(); ++ridx) {
|
|
if (ridx % 3 == 0) {
|
|
ASSERT_LT(h_position[ridx], 0);
|
|
} else {
|
|
ASSERT_EQ(h_position[ridx], ridx % 2 == 0 ? 1 : 2);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(RowPartitioner, Finalise) { TestFinalise(); }
|
|
|
|
void TestIncorrectRow() {
|
|
RowPartitioner rp(0, 1);
|
|
rp.UpdatePosition(0, 1, 2, [=]__device__ (RowPartitioner::RowIndexT ridx)
|
|
{
|
|
return 4; // This is not the left branch or the right branch
|
|
});
|
|
}
|
|
|
|
TEST(RowPartitionerDeathTest, IncorrectRow) {
|
|
ASSERT_DEATH({ TestIncorrectRow(); },".*");
|
|
}
|
|
} // namespace tree
|
|
} // namespace xgboost
|