xgboost/demo/guide-python/sklearn_examples.py
2015-04-01 23:29:05 -07:00

43 lines
1.2 KiB
Python

'''
Created on 1 Apr 2015
@author: Jamie Hall
'''
import sys
sys.path.append('../../wrapper')
import xgboost as xgb
import numpy as np
from sklearn.cross_validation import KFold
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import confusion_matrix
from sklearn.datasets import load_iris, load_digits, load_boston
rng = np.random.RandomState(31337)
print("Zeros and Ones from the Digits dataset: binary classification")
digits = load_digits(2)
y = digits['target']
X = digits['data']
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
for train_index, test_index in kf:
xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index])
predictions = xgb_model.predict(X[test_index])
actuals = y[test_index]
print(confusion_matrix(actuals, predictions))
print("Iris: multiclass classification")
iris = load_iris()
y = iris['target']
X = iris['data']
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
for train_index, test_index in kf:
xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index])
predictions = xgb_model.predict(X[test_index])
actuals = y[test_index]
print(confusion_matrix(actuals, predictions))