* Replace all uses of deprecated function sklearn.datasets.load_boston * More renaming * Fix bad name * Update assertion * Fix n boosted rounds. * Avoid over regularization. * Rebase. * Avoid over regularization. * Whac-a-mole Co-authored-by: fis <jm.yuan@outlook.com>
20 lines
672 B
Python
20 lines
672 B
Python
"""
|
|
Demo for using xgboost with sklearn
|
|
===================================
|
|
"""
|
|
from sklearn.model_selection import GridSearchCV
|
|
from sklearn.datasets import fetch_california_housing
|
|
import xgboost as xgb
|
|
import multiprocessing
|
|
|
|
if __name__ == "__main__":
|
|
print("Parallel Parameter optimization")
|
|
X, y = fetch_california_housing(return_X_y=True)
|
|
xgb_model = xgb.XGBRegressor(n_jobs=multiprocessing.cpu_count() // 2)
|
|
clf = GridSearchCV(xgb_model, {'max_depth': [2, 4, 6],
|
|
'n_estimators': [50, 100, 200]}, verbose=1,
|
|
n_jobs=2)
|
|
clf.fit(X, y)
|
|
print(clf.best_score_)
|
|
print(clf.best_params_)
|