* [CI] Migrate to rockylinux8 / manylinux_2_28_x86_64 * Scrub all references to CentOS 7 * Fix * Remove use of yum * Use gcc-10 in cpu * Temporarily disable -Werror * Use GCC 9 for now * Roll back gRPC * Scrub all references to manylinux2014_x86_64 * Revise rename_whl.py to handle no-op rename * Change JDK_VERSION back to 8 * Reviewer's comment * Use GCC 10 * Use Spark 3.5.1, same as in pom.xml * Fix JAR install
318 lines
11 KiB
Python
318 lines
11 KiB
Python
import json
|
|
import os
|
|
import pathlib
|
|
import tempfile
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import xgboost as xgb
|
|
from xgboost import testing as tm
|
|
|
|
dpath = "demo/data/"
|
|
rng = np.random.RandomState(1994)
|
|
|
|
|
|
class TestBasic:
|
|
def test_compat(self):
|
|
from xgboost.compat import lazy_isinstance
|
|
|
|
a = np.array([1, 2, 3])
|
|
assert lazy_isinstance(a, "numpy", "ndarray")
|
|
assert not lazy_isinstance(a, "numpy", "dataframe")
|
|
|
|
def test_basic(self):
|
|
dtrain, dtest = tm.load_agaricus(__file__)
|
|
param = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
|
|
# specify validations set to watch performance
|
|
watchlist = [(dtrain, "train")]
|
|
num_round = 2
|
|
bst = xgb.train(param, dtrain, num_round, evals=watchlist, verbose_eval=True)
|
|
|
|
preds = bst.predict(dtrain)
|
|
labels = dtrain.get_label()
|
|
err = sum(
|
|
1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]
|
|
) / float(len(preds))
|
|
# error must be smaller than 10%
|
|
assert err < 0.1
|
|
|
|
preds = bst.predict(dtest)
|
|
labels = dtest.get_label()
|
|
err = sum(
|
|
1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]
|
|
) / float(len(preds))
|
|
# error must be smaller than 10%
|
|
assert err < 0.1
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
dtest_path = os.path.join(tmpdir, "dtest.dmatrix")
|
|
# save dmatrix into binary buffer
|
|
dtest.save_binary(dtest_path)
|
|
# save model
|
|
model_path = os.path.join(tmpdir, "model.ubj")
|
|
bst.save_model(model_path)
|
|
# load model and data in
|
|
bst2 = xgb.Booster(model_file=model_path)
|
|
dtest2 = xgb.DMatrix(dtest_path)
|
|
preds2 = bst2.predict(dtest2)
|
|
# assert they are the same
|
|
assert np.sum(np.abs(preds2 - preds)) == 0
|
|
|
|
def test_metric_config(self):
|
|
# Make sure that the metric configuration happens in booster so the string
|
|
# `['error', 'auc']` doesn't get passed down to core.
|
|
dtrain, dtest = tm.load_agaricus(__file__)
|
|
param = {
|
|
"max_depth": 2,
|
|
"eta": 1,
|
|
"objective": "binary:logistic",
|
|
"eval_metric": ["error", "auc"],
|
|
}
|
|
watchlist = [(dtest, "eval"), (dtrain, "train")]
|
|
num_round = 2
|
|
booster = xgb.train(param, dtrain, num_round, evals=watchlist)
|
|
predt_0 = booster.predict(dtrain)
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
path = os.path.join(tmpdir, "model.json")
|
|
booster.save_model(path)
|
|
|
|
booster = xgb.Booster(params=param, model_file=path)
|
|
predt_1 = booster.predict(dtrain)
|
|
np.testing.assert_allclose(predt_0, predt_1)
|
|
|
|
def test_multiclass(self):
|
|
dtrain, dtest = tm.load_agaricus(__file__)
|
|
param = {"max_depth": 2, "eta": 1, "num_class": 2}
|
|
# specify validations set to watch performance
|
|
watchlist = [(dtest, "eval"), (dtrain, "train")]
|
|
num_round = 2
|
|
bst = xgb.train(param, dtrain, num_round, evals=watchlist)
|
|
# this is prediction
|
|
preds = bst.predict(dtest)
|
|
labels = dtest.get_label()
|
|
err = sum(1 for i in range(len(preds)) if preds[i] != labels[i]) / float(
|
|
len(preds)
|
|
)
|
|
# error must be smaller than 10%
|
|
assert err < 0.1
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
dtest_path = os.path.join(tmpdir, "dtest.buffer")
|
|
model_path = os.path.join(tmpdir, "model.ubj")
|
|
# save dmatrix into binary buffer
|
|
dtest.save_binary(dtest_path)
|
|
# save model
|
|
bst.save_model(model_path)
|
|
# load model and data in
|
|
bst2 = xgb.Booster(model_file=model_path)
|
|
dtest2 = xgb.DMatrix(dtest_path)
|
|
preds2 = bst2.predict(dtest2)
|
|
# assert they are the same
|
|
assert np.sum(np.abs(preds2 - preds)) == 0
|
|
|
|
def test_dump(self):
|
|
data = np.random.randn(100, 2)
|
|
target = np.array([0, 1] * 50)
|
|
features = ["Feature1", "Feature2"]
|
|
|
|
dm = xgb.DMatrix(data, label=target, feature_names=features)
|
|
params = {
|
|
"objective": "binary:logistic",
|
|
"eval_metric": "logloss",
|
|
"eta": 0.3,
|
|
"max_depth": 1,
|
|
}
|
|
|
|
bst = xgb.train(params, dm, num_boost_round=1)
|
|
|
|
# number of feature importances should == number of features
|
|
dump1 = bst.get_dump()
|
|
assert len(dump1) == 1, "Expected only 1 tree to be dumped."
|
|
len(
|
|
dump1[0].splitlines()
|
|
) == 3, "Expected 1 root and 2 leaves - 3 lines in dump."
|
|
|
|
dump2 = bst.get_dump(with_stats=True)
|
|
assert (
|
|
dump2[0].count("\n") == 3
|
|
), "Expected 1 root and 2 leaves - 3 lines in dump."
|
|
msg = "Expected more info when with_stats=True is given."
|
|
assert dump2[0].find("\n") > dump1[0].find("\n"), msg
|
|
|
|
dump3 = bst.get_dump(dump_format="json")
|
|
dump3j = json.loads(dump3[0])
|
|
assert dump3j["nodeid"] == 0, "Expected the root node on top."
|
|
|
|
dump4 = bst.get_dump(dump_format="json", with_stats=True)
|
|
dump4j = json.loads(dump4[0])
|
|
assert "gain" in dump4j, "Expected 'gain' to be dumped in JSON."
|
|
|
|
with pytest.raises(ValueError):
|
|
bst.get_dump(fmap="foo")
|
|
|
|
def test_feature_score(self):
|
|
rng = np.random.RandomState(0)
|
|
data = rng.randn(100, 2)
|
|
target = np.array([0, 1] * 50)
|
|
features = ["F0"]
|
|
with pytest.raises(ValueError):
|
|
xgb.DMatrix(data, label=target, feature_names=features)
|
|
|
|
params = {"objective": "binary:logistic"}
|
|
dm = xgb.DMatrix(data, label=target, feature_names=["F0", "F1"])
|
|
booster = xgb.train(params, dm, num_boost_round=1)
|
|
# no error since feature names might be assigned before the booster seeing data
|
|
# and booster doesn't known about the actual number of features.
|
|
booster.feature_names = ["F0"]
|
|
with pytest.raises(ValueError):
|
|
booster.get_fscore()
|
|
|
|
booster.feature_names = None
|
|
# Use JSON to make sure the output has native Python type
|
|
scores = json.loads(json.dumps(booster.get_fscore()))
|
|
np.testing.assert_allclose(scores["f0"], 6.0)
|
|
|
|
def test_load_file_invalid(self):
|
|
with pytest.raises(xgb.core.XGBoostError):
|
|
xgb.Booster(model_file="incorrect_path")
|
|
|
|
with pytest.raises(xgb.core.XGBoostError):
|
|
xgb.Booster(model_file="不正なパス")
|
|
|
|
@pytest.mark.parametrize(
|
|
"path", ["모델.ubj", "がうる・ぐら.json"], ids=["path-0", "path-1"]
|
|
)
|
|
def test_unicode_path(self, tmpdir, path):
|
|
model_path = pathlib.Path(tmpdir) / path
|
|
dtrain, _ = tm.load_agaricus(__file__)
|
|
param = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
|
|
bst = xgb.train(param, dtrain, num_boost_round=2)
|
|
bst.save_model(model_path)
|
|
|
|
bst2 = xgb.Booster(model_file=model_path)
|
|
assert bst.get_dump(dump_format="text") == bst2.get_dump(dump_format="text")
|
|
|
|
def test_dmatrix_numpy_init_omp(self):
|
|
rows = [1000, 11326, 15000]
|
|
cols = 50
|
|
for row in rows:
|
|
X = np.random.randn(row, cols)
|
|
y = np.random.randn(row).astype("f")
|
|
dm = xgb.DMatrix(X, y, nthread=0)
|
|
np.testing.assert_array_equal(dm.get_label(), y)
|
|
assert dm.num_row() == row
|
|
assert dm.num_col() == cols
|
|
|
|
dm = xgb.DMatrix(X, y, nthread=10)
|
|
np.testing.assert_array_equal(dm.get_label(), y)
|
|
assert dm.num_row() == row
|
|
assert dm.num_col() == cols
|
|
|
|
def test_cv(self):
|
|
dm, _ = tm.load_agaricus(__file__)
|
|
params = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
|
|
|
|
# return np.ndarray
|
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=False)
|
|
assert isinstance(cv, dict)
|
|
assert len(cv) == (4)
|
|
|
|
def test_cv_no_shuffle(self):
|
|
dm, _ = tm.load_agaricus(__file__)
|
|
params = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
|
|
|
|
# return np.ndarray
|
|
cv = xgb.cv(
|
|
params, dm, num_boost_round=10, shuffle=False, nfold=10, as_pandas=False
|
|
)
|
|
assert isinstance(cv, dict)
|
|
assert len(cv) == (4)
|
|
|
|
def test_cv_explicit_fold_indices(self):
|
|
dm, _ = tm.load_agaricus(__file__)
|
|
params = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
|
|
folds = [
|
|
# Train Test
|
|
([1, 3], [5, 8]),
|
|
([7, 9], [23, 43]),
|
|
]
|
|
|
|
# return np.ndarray
|
|
cv = xgb.cv(params, dm, num_boost_round=10, folds=folds, as_pandas=False)
|
|
assert isinstance(cv, dict)
|
|
assert len(cv) == (4)
|
|
|
|
def test_cv_explicit_fold_indices_labels(self):
|
|
params = {"max_depth": 2, "eta": 1, "objective": "reg:squarederror"}
|
|
N = 100
|
|
F = 3
|
|
dm = xgb.DMatrix(data=np.random.randn(N, F), label=np.arange(N))
|
|
folds = [
|
|
# Train Test
|
|
([1, 3], [5, 8]),
|
|
([7, 9], [23, 43, 11]),
|
|
]
|
|
|
|
# Use callback to log the test labels in each fold
|
|
class Callback(xgb.callback.TrainingCallback):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def after_iteration(
|
|
self,
|
|
model,
|
|
epoch: int,
|
|
evals_log: xgb.callback.TrainingCallback.EvalsLog,
|
|
):
|
|
print([fold.dtest.get_label() for fold in model.cvfolds])
|
|
|
|
cb = Callback()
|
|
|
|
# Run cross validation and capture standard out to test callback result
|
|
with tm.captured_output() as (out, err):
|
|
xgb.cv(
|
|
params,
|
|
dm,
|
|
num_boost_round=1,
|
|
folds=folds,
|
|
callbacks=[cb],
|
|
as_pandas=False,
|
|
)
|
|
output = out.getvalue().strip()
|
|
solution = (
|
|
"[array([5., 8.], dtype=float32), array([23., 43., 11.],"
|
|
+ " dtype=float32)]"
|
|
)
|
|
assert output == solution
|
|
|
|
|
|
class TestBasicPathLike:
|
|
"""Unit tests using pathlib.Path for file interaction."""
|
|
|
|
def test_DMatrix_init_from_path(self):
|
|
"""Initialization from the data path."""
|
|
dtrain, _ = tm.load_agaricus(__file__)
|
|
assert dtrain.num_row() == 6513
|
|
assert dtrain.num_col() == 127
|
|
|
|
def test_DMatrix_save_to_path(self):
|
|
"""Saving to a binary file using pathlib from a DMatrix."""
|
|
data = np.random.randn(100, 2)
|
|
target = np.array([0, 1] * 50)
|
|
features = ["Feature1", "Feature2"]
|
|
|
|
dm = xgb.DMatrix(data, label=target, feature_names=features)
|
|
|
|
# save, assert exists, remove file
|
|
binary_path = Path("dtrain.bin")
|
|
dm.save_binary(binary_path)
|
|
assert binary_path.exists()
|
|
Path.unlink(binary_path)
|
|
|
|
def test_Booster_init_invalid_path(self):
|
|
"""An invalid model_file path should raise XGBoostError."""
|
|
with pytest.raises(xgb.core.XGBoostError):
|
|
xgb.Booster(model_file=Path("invalidpath"))
|