xgboost/include/xgboost/learner.h

350 lines
12 KiB
C++

/**
* Copyright 2015-2023 by XGBoost Contributors
* \file learner.h
* \brief Learner interface that integrates objective, gbm and evaluation together.
* This is the user facing XGBoost training module.
* \author Tianqi Chen
*/
#ifndef XGBOOST_LEARNER_H_
#define XGBOOST_LEARNER_H_
#include <dmlc/io.h> // for Serializable
#include <xgboost/base.h> // for bst_feature_t, bst_target_t, bst_float, Args, GradientPair, ..
#include <xgboost/context.h> // for Context
#include <xgboost/linalg.h> // for Tensor, TensorView
#include <xgboost/metric.h> // for Metric
#include <xgboost/model.h> // for Configurable, Model
#include <xgboost/span.h> // for Span
#include <xgboost/task.h> // for ObjInfo
#include <algorithm> // for max
#include <cstdint> // for int32_t, uint32_t, uint8_t
#include <map> // for map
#include <memory> // for shared_ptr, unique_ptr
#include <string> // for string
#include <utility> // for move
#include <vector> // for vector
namespace xgboost {
class FeatureMap;
class Metric;
class GradientBooster;
class ObjFunction;
class DMatrix;
class Json;
struct XGBAPIThreadLocalEntry;
template <typename T>
class HostDeviceVector;
enum class PredictionType : std::uint8_t { // NOLINT
kValue = 0,
kMargin = 1,
kContribution = 2,
kApproxContribution = 3,
kInteraction = 4,
kApproxInteraction = 5,
kLeaf = 6
};
/*!
* \brief Learner class that does training and prediction.
* This is the user facing module of xgboost training.
* The Load/Save function corresponds to the model used in python/R.
* \code
*
* std::unique_ptr<Learner> learner(new Learner::Create(cache_mats));
* learner.Configure(configs);
*
* for (int iter = 0; iter < max_iter; ++iter) {
* learner->UpdateOneIter(iter, train_mat);
* LOG(INFO) << learner->EvalOneIter(iter, data_sets, data_names);
* }
*
* \endcode
*/
class Learner : public Model, public Configurable, public dmlc::Serializable {
public:
/*! \brief virtual destructor */
~Learner() override;
/*!
* \brief Configure Learner based on set parameters.
*/
virtual void Configure() = 0;
/*!
* \brief update the model for one iteration
* With the specified objective function.
* \param iter current iteration number
* \param train reference to the data matrix.
*/
virtual void UpdateOneIter(std::int32_t iter, std::shared_ptr<DMatrix> train) = 0;
/**
* @brief Do customized gradient boosting with in_gpair.
*
* @note in_gpair can be mutated after this call.
*
* @param iter current iteration number
* @param train reference to the data matrix.
* @param in_gpair The input gradient statistics.
*/
virtual void BoostOneIter(std::int32_t iter, std::shared_ptr<DMatrix> train,
linalg::Matrix<GradientPair>* in_gpair) = 0;
/*!
* \brief evaluate the model for specific iteration using the configured metrics.
* \param iter iteration number
* \param data_sets datasets to be evaluated.
* \param data_names name of each dataset
* \return a string corresponding to the evaluation result
*/
virtual std::string EvalOneIter(int iter,
const std::vector<std::shared_ptr<DMatrix>>& data_sets,
const std::vector<std::string>& data_names) = 0;
/*!
* \brief get prediction given the model.
* \param data input data
* \param output_margin whether to only predict margin value instead of transformed prediction
* \param out_preds output vector that stores the prediction
* \param layer_begin Beginning of boosted tree layer used for prediction.
* \param layer_end End of booster layer. 0 means do not limit trees.
* \param training Whether the prediction result is used for training
* \param pred_leaf whether to only predict the leaf index of each tree in a boosted tree predictor
* \param pred_contribs whether to only predict the feature contributions
* \param approx_contribs whether to approximate the feature contributions for speed
* \param pred_interactions whether to compute the feature pair contributions
*/
virtual void Predict(std::shared_ptr<DMatrix> data, bool output_margin,
HostDeviceVector<bst_float>* out_preds, bst_layer_t layer_begin,
bst_layer_t layer_end, bool training = false, bool pred_leaf = false,
bool pred_contribs = false, bool approx_contribs = false,
bool pred_interactions = false) = 0;
/*!
* \brief Inplace prediction.
*
* \param p_fmat A proxy DMatrix that contains the data and related meta info.
* \param type Prediction type.
* \param missing Missing value in the data.
* \param [in,out] out_preds Pointer to output prediction vector.
* \param layer_begin Beginning of boosted tree layer used for prediction.
* \param layer_end End of booster layer. 0 means do not limit trees.
*/
virtual void InplacePredict(std::shared_ptr<DMatrix> p_m, PredictionType type, float missing,
HostDeviceVector<float>** out_preds, bst_layer_t layer_begin,
bst_layer_t layer_end) = 0;
/*!
* \brief Calculate feature score. See doc in C API for outputs.
*/
virtual void CalcFeatureScore(std::string const& importance_type,
common::Span<int32_t const> trees,
std::vector<bst_feature_t>* features,
std::vector<float>* scores) = 0;
/*
* \brief Get number of boosted rounds from gradient booster.
*/
virtual int32_t BoostedRounds() const = 0;
/**
* \brief Get the number of output groups from the model.
*/
virtual std::uint32_t Groups() const = 0;
void LoadModel(Json const& in) override = 0;
void SaveModel(Json* out) const override = 0;
virtual void LoadModel(dmlc::Stream* fi) = 0;
virtual void SaveModel(dmlc::Stream* fo) const = 0;
/*!
* \brief Set multiple parameters at once.
*
* \param args parameters.
*/
virtual void SetParams(Args const& args) = 0;
/*!
* \brief Set parameter for booster
*
* The property will NOT be saved along with booster
*
* \param key The key of parameter
* \param value The value of parameter
*/
virtual void SetParam(const std::string& key, const std::string& value) = 0;
/*!
* \brief Get the number of features of the booster.
* \return number of features
*/
virtual uint32_t GetNumFeature() const = 0;
/*!
* \brief Set additional attribute to the Booster.
*
* The property will be saved along the booster.
*
* \param key The key of the property.
* \param value The value of the property.
*/
virtual void SetAttr(const std::string& key, const std::string& value) = 0;
/*!
* \brief Get attribute from the booster.
* The property will be saved along the booster.
* \param key The key of the attribute.
* \param out The output value.
* \return Whether the key exists among booster's attributes.
*/
virtual bool GetAttr(const std::string& key, std::string* out) const = 0;
/*!
* \brief Delete an attribute from the booster.
* \param key The key of the attribute.
* \return Whether the key was found among booster's attributes.
*/
virtual bool DelAttr(const std::string& key) = 0;
/*!
* \brief Get a vector of attribute names from the booster.
* \return vector of attribute name strings.
*/
virtual std::vector<std::string> GetAttrNames() const = 0;
/*!
* \brief Set the feature names for current booster.
* \param fn Input feature names
*/
virtual void SetFeatureNames(std::vector<std::string> const& fn) = 0;
/*!
* \brief Get the feature names for current booster.
* \param fn Output feature names
*/
virtual void GetFeatureNames(std::vector<std::string>* fn) const = 0;
/*!
* \brief Set the feature types for current booster.
* \param ft Input feature types.
*/
virtual void SetFeatureTypes(std::vector<std::string> const& ft) = 0;
/*!
* \brief Get the feature types for current booster.
* \param fn Output feature types
*/
virtual void GetFeatureTypes(std::vector<std::string>* ft) const = 0;
/**
* \brief Slice the model.
*
* See InplacePredict for layer parameters.
*
* \param step step size between slice.
* \param out_of_bound Return true if end layer is out of bound.
*
* \return a sliced model.
*/
virtual Learner* Slice(bst_layer_t begin, bst_layer_t end, bst_layer_t step,
bool* out_of_bound) = 0;
/*!
* \brief dump the model in the requested format
* \param fmap feature map that may help give interpretations of feature
* \param with_stats extra statistics while dumping model
* \param format the format to dump the model in
* \return a vector of dump for boosters.
*/
virtual std::vector<std::string> DumpModel(const FeatureMap& fmap,
bool with_stats,
std::string format) = 0;
virtual XGBAPIThreadLocalEntry& GetThreadLocal() const = 0;
/*!
* \brief Create a new instance of learner.
* \param cache_data The matrix to cache the prediction.
* \return Created learner.
*/
static Learner* Create(const std::vector<std::shared_ptr<DMatrix> >& cache_data);
/**
* \brief Return the context object of this Booster.
*/
virtual Context const* Ctx() const = 0;
/*!
* \brief Get configuration arguments currently stored by the learner
* \return Key-value pairs representing configuration arguments
*/
virtual const std::map<std::string, std::string>& GetConfigurationArguments() const = 0;
protected:
/*! \brief objective function */
std::unique_ptr<ObjFunction> obj_;
/*! \brief The gradient booster used by the model*/
std::unique_ptr<GradientBooster> gbm_;
/*! \brief The evaluation metrics used to evaluate the model. */
std::vector<std::unique_ptr<Metric> > metrics_;
/*! \brief Training parameter. */
Context ctx_;
};
struct LearnerModelParamLegacy;
/**
* \brief Strategy for building multi-target models.
*/
enum class MultiStrategy : std::int32_t {
kOneOutputPerTree = 0,
kMultiOutputTree = 1,
};
/**
* \brief Basic model parameters, used to describe the booster.
*/
struct LearnerModelParam {
private:
/**
* \brief Global bias, this is just a scalar value but can be extended to vector when we
* support multi-class and multi-target.
*/
linalg::Tensor<float, 1> base_score_;
public:
/**
* \brief The number of features.
*/
bst_feature_t num_feature{0};
/**
* \brief The number of classes or targets.
*/
std::uint32_t num_output_group{0};
/**
* \brief Current task, determined by objective.
*/
ObjInfo task{ObjInfo::kRegression};
/**
* \brief Strategy for building multi-target models.
*/
MultiStrategy multi_strategy{MultiStrategy::kOneOutputPerTree};
LearnerModelParam() = default;
// As the old `LearnerModelParamLegacy` is still used by binary IO, we keep
// this one as an immutable copy.
LearnerModelParam(Context const* ctx, LearnerModelParamLegacy const& user_param,
linalg::Tensor<float, 1> base_margin, ObjInfo t, MultiStrategy multi_strategy);
LearnerModelParam(LearnerModelParamLegacy const& user_param, ObjInfo t,
MultiStrategy multi_strategy);
LearnerModelParam(bst_feature_t n_features, linalg::Tensor<float, 1> base_score,
std::uint32_t n_groups, bst_target_t n_targets, MultiStrategy multi_strategy)
: base_score_{std::move(base_score)},
num_feature{n_features},
num_output_group{std::max(n_groups, n_targets)},
multi_strategy{multi_strategy} {}
linalg::TensorView<float const, 1> BaseScore(Context const* ctx) const;
[[nodiscard]] linalg::TensorView<float const, 1> BaseScore(DeviceOrd device) const;
void Copy(LearnerModelParam const& that);
[[nodiscard]] bool IsVectorLeaf() const noexcept {
return multi_strategy == MultiStrategy::kMultiOutputTree;
}
[[nodiscard]] bst_target_t OutputLength() const noexcept { return this->num_output_group; }
[[nodiscard]] bst_target_t LeafLength() const noexcept {
return this->IsVectorLeaf() ? this->OutputLength() : 1;
}
/* \brief Whether this parameter is initialized with LearnerModelParamLegacy. */
[[nodiscard]] bool Initialized() const { return num_feature != 0 && num_output_group != 0; }
};
} // namespace xgboost
#endif // XGBOOST_LEARNER_H_