xgboost/tests/python-gpu/load_pickle.py

68 lines
2.4 KiB
Python

"""Loading a pickled model generated by test_pickling.py, only used by
`test_gpu_with_dask.py`"""
import json
import os
import numpy as np
import pytest
from test_gpu_pickling import build_dataset, load_pickle, model_path
import xgboost as xgb
from xgboost import testing as tm
class TestLoadPickle:
def test_load_pkl(self) -> None:
"""Test whether prediction is correct."""
assert os.environ["CUDA_VISIBLE_DEVICES"] == "-1"
bst = load_pickle(model_path)
x, y = build_dataset()
if isinstance(bst, xgb.Booster):
test_x = xgb.DMatrix(x)
res = bst.predict(test_x)
else:
res = bst.predict(x)
assert len(res) == 10
bst.set_params(n_jobs=1) # triggers a re-configuration
res = bst.predict(x)
assert len(res) == 10
def test_context_is_removed(self) -> None:
"""Under invalid CUDA_VISIBLE_DEVICES, context should reset"""
assert os.environ["CUDA_VISIBLE_DEVICES"] == "-1"
bst = load_pickle(model_path)
config = bst.save_config()
config = json.loads(config)
assert config["learner"]["generic_param"]["device"] == "cpu"
def test_context_is_preserved(self) -> None:
"""Test the device context is preserved after pickling."""
assert "CUDA_VISIBLE_DEVICES" not in os.environ.keys()
bst = load_pickle(model_path)
config = bst.save_config()
config = json.loads(config)
assert config["learner"]["generic_param"]["device"] == "cuda:0"
def test_wrap_gpu_id(self) -> None:
assert os.environ["CUDA_VISIBLE_DEVICES"] == "0"
bst = load_pickle(model_path)
config = bst.save_config()
config = json.loads(config)
assert config["learner"]["generic_param"]["device"] == "cuda:0"
x, y = build_dataset()
test_x = xgb.DMatrix(x)
res = bst.predict(test_x)
assert len(res) == 10
def test_training_on_cpu_only_env(self) -> None:
assert os.environ["CUDA_VISIBLE_DEVICES"] == "-1"
rng = np.random.RandomState(1994)
X = rng.randn(10, 10)
y = rng.randn(10)
with pytest.warns(UserWarning, match="No visible GPU is found"):
# Test no thrust exception is thrown
with pytest.raises(xgb.core.XGBoostError, match="have at least one device"):
xgb.train({"tree_method": "gpu_hist"}, xgb.DMatrix(X, y))