xgboost/src/common/column_matrix.h
Philip Cho 14fba01b5a Improve multi-threaded performance (#2104)
* Add UpdatePredictionCache() option to updaters

Some updaters (e.g. fast_hist) has enough information to quickly compute
prediction cache for the training data. Each updater may override
UpdaterPredictionCache() method to update the prediction cache. Note: this
trick does not apply to validation data.

* Respond to code review

* Disable some debug messages by default
* Document UpdatePredictionCache() interface
* Remove base_margin logic from UpdatePredictionCache() implementation
* Do not take pointer to cfg, as reference may get stale

* Improve multi-threaded performance

* Use columnwise accessor to accelerate ApplySplit() step,
  with support for a compressed representation
* Parallel sort for evaluation step
* Inline BuildHist() function
* Cache gradient pairs when building histograms in BuildHist()

* Add missing #if macro

* Respond to code review

* Use wrapper to enable parallel sort on Linux

* Fix C++ compatibility issues

* MSVC doesn't support unsigned in OpenMP loops
* gcc 4.6 doesn't support using keyword

* Fix lint issues

* Respond to code review

* Fix bug in ApplySplitSparseData()

* Attempting to read beyond the end of a sparse column
* Mishandling the case where an entire range of rows have missing values

* Fix training continuation bug

Disable UpdatePredictionCache() in the first iteration. This way, we can
accomodate the scenario where we build off of an existing (nonempty) ensemble.

* Add regression test for fast_hist

* Respond to code review

* Add back old version of ApplySplitSparseData
2017-03-25 10:35:01 -07:00

232 lines
7.6 KiB
C++

/*!
* Copyright 2017 by Contributors
* \file column_matrix.h
* \brief Utility for fast column-wise access
* \author Philip Cho
*/
#ifndef XGBOOST_COMMON_COLUMN_MATRIX_H_
#define XGBOOST_COMMON_COLUMN_MATRIX_H_
#define XGBOOST_TYPE_SWITCH(dtype, OP) \
switch (dtype) { \
case xgboost::common::uint32 : { \
typedef uint32_t DType; \
OP; break; \
} \
case xgboost::common::uint16 : { \
typedef uint16_t DType; \
OP; break; \
} \
case xgboost::common::uint8 : { \
typedef uint8_t DType; \
OP; break; \
default: LOG(FATAL) << "don't recognize type flag" << dtype; \
} \
}
#include <type_traits>
#include <limits>
#include <vector>
#include "hist_util.h"
namespace xgboost {
namespace common {
/*! \brief indicator of data type used for storing bin id's in a column. */
enum DataType {
uint8 = 1,
uint16 = 2,
uint32 = 4
};
/*! \brief column type */
enum ColumnType {
kDenseColumn,
kSparseColumn
};
/*! \brief a column storage, to be used with ApplySplit. Note that each
bin id is stored as index[i] + index_base. */
template<typename T>
class Column {
public:
ColumnType type;
const T* index;
uint32_t index_base;
const uint32_t* row_ind;
size_t len;
};
/*! \brief a collection of columns, with support for construction from
GHistIndexMatrix. */
class ColumnMatrix {
public:
// get number of features
inline uint32_t GetNumFeature() const {
return type_.size();
}
// construct column matrix from GHistIndexMatrix
inline void Init(const GHistIndexMatrix& gmat, DataType dtype) {
this->dtype = dtype;
/* if dtype is smaller than uint32_t, multiple bin_id's will be stored in each
slot of internal buffer. */
packing_factor_ = sizeof(uint32_t) / static_cast<size_t>(this->dtype);
const uint32_t nfeature = gmat.cut->row_ptr.size() - 1;
const omp_ulong nrow = static_cast<omp_ulong>(gmat.row_ptr.size() - 1);
// identify type of each column
feature_counts_.resize(nfeature);
type_.resize(nfeature);
std::fill(feature_counts_.begin(), feature_counts_.end(), 0);
uint32_t max_val = 0;
XGBOOST_TYPE_SWITCH(this->dtype, {
max_val = static_cast<uint32_t>(std::numeric_limits<DType>::max());
});
for (uint32_t fid = 0; fid < nfeature; ++fid) {
CHECK_LE(gmat.cut->row_ptr[fid + 1] - gmat.cut->row_ptr[fid], max_val);
}
gmat.GetFeatureCounts(&feature_counts_[0]);
// classify features
for (uint32_t fid = 0; fid < nfeature; ++fid) {
if (static_cast<double>(feature_counts_[fid]) < 0.5*nrow) {
type_[fid] = kSparseColumn;
} else {
type_[fid] = kDenseColumn;
}
}
// want to compute storage boundary for each feature
// using variants of prefix sum scan
boundary_.resize(nfeature);
bst_uint accum_index_ = 0;
bst_uint accum_row_ind_ = 0;
for (uint32_t fid = 0; fid < nfeature; ++fid) {
boundary_[fid].index_begin = accum_index_;
boundary_[fid].row_ind_begin = accum_row_ind_;
if (type_[fid] == kDenseColumn) {
accum_index_ += nrow;
} else {
accum_index_ += feature_counts_[fid];
accum_row_ind_ += feature_counts_[fid];
}
boundary_[fid].index_end = accum_index_;
boundary_[fid].row_ind_end = accum_row_ind_;
}
index_.resize((boundary_[nfeature - 1].index_end
+ (packing_factor_ - 1)) / packing_factor_);
row_ind_.resize(boundary_[nfeature - 1].row_ind_end);
// store least bin id for each feature
index_base_.resize(nfeature);
for (uint32_t fid = 0; fid < nfeature; ++fid) {
index_base_[fid] = gmat.cut->row_ptr[fid];
}
// fill index_ for dense columns
for (uint32_t fid = 0; fid < nfeature; ++fid) {
if (type_[fid] == kDenseColumn) {
const uint32_t ibegin = boundary_[fid].index_begin;
XGBOOST_TYPE_SWITCH(this->dtype, {
const size_t block_offset = ibegin / packing_factor_;
const size_t elem_offset = ibegin % packing_factor_;
DType* begin = reinterpret_cast<DType*>(&index_[block_offset]) + elem_offset;
DType* end = begin + nrow;
std::fill(begin, end, std::numeric_limits<DType>::max());
// max() indicates missing values
});
}
}
// loop over all rows and fill column entries
// num_nonzeros[fid] = how many nonzeros have this feature accumulated so far?
std::vector<uint32_t> num_nonzeros;
num_nonzeros.resize(nfeature);
std::fill(num_nonzeros.begin(), num_nonzeros.end(), 0);
for (uint32_t rid = 0; rid < nrow; ++rid) {
const size_t ibegin = static_cast<size_t>(gmat.row_ptr[rid]);
const size_t iend = static_cast<size_t>(gmat.row_ptr[rid + 1]);
size_t fid = 0;
for (size_t i = ibegin; i < iend; ++i) {
const size_t bin_id = gmat.index[i];
while (bin_id >= gmat.cut->row_ptr[fid + 1]) {
++fid;
}
if (type_[fid] == kDenseColumn) {
XGBOOST_TYPE_SWITCH(this->dtype, {
const size_t block_offset = boundary_[fid].index_begin / packing_factor_;
const size_t elem_offset = boundary_[fid].index_begin % packing_factor_;
DType* begin = reinterpret_cast<DType*>(&index_[block_offset]) + elem_offset;
begin[rid] = bin_id - index_base_[fid];
});
} else {
XGBOOST_TYPE_SWITCH(this->dtype, {
const size_t block_offset = boundary_[fid].index_begin / packing_factor_;
const size_t elem_offset = boundary_[fid].index_begin % packing_factor_;
DType* begin = reinterpret_cast<DType*>(&index_[block_offset]) + elem_offset;
begin[num_nonzeros[fid]] = bin_id - index_base_[fid];
});
row_ind_[boundary_[fid].row_ind_begin + num_nonzeros[fid]] = rid;
++num_nonzeros[fid];
}
}
}
}
/* Fetch an individual column. This code should be used with XGBOOST_TYPE_SWITCH
to determine type of bin id's */
template<typename T>
inline Column<T> GetColumn(unsigned fid) const {
const bool valid_type = std::is_same<T, uint32_t>::value
|| std::is_same<T, uint16_t>::value
|| std::is_same<T, uint8_t>::value;
CHECK(valid_type);
Column<T> c;
c.type = type_[fid];
const size_t block_offset = boundary_[fid].index_begin / packing_factor_;
const size_t elem_offset = boundary_[fid].index_begin % packing_factor_;
c.index = reinterpret_cast<const T*>(&index_[block_offset]) + elem_offset;
c.index_base = index_base_[fid];
c.row_ind = &row_ind_[boundary_[fid].row_ind_begin];
c.len = boundary_[fid].index_end - boundary_[fid].index_begin;
return c;
}
public:
DataType dtype;
private:
struct ColumnBoundary {
// indicate where each column's index and row_ind is stored.
// index_begin and index_end are logical offsets, so they should be converted to
// actual offsets by scaling with packing_factor_
unsigned index_begin;
unsigned index_end;
unsigned row_ind_begin;
unsigned row_ind_end;
};
std::vector<bst_uint> feature_counts_;
std::vector<ColumnType> type_;
std::vector<uint32_t> index_; // index_: may store smaller integers; needs padding
std::vector<uint32_t> row_ind_;
std::vector<ColumnBoundary> boundary_;
size_t packing_factor_; // how many integers are stored in each slot of index_
// index_base_[fid]: least bin id for feature fid
std::vector<uint32_t> index_base_;
};
} // namespace common
} // namespace xgboost
#endif // XGBOOST_COMMON_COLUMN_MATRIX_H_