488 lines
17 KiB
Plaintext
488 lines
17 KiB
Plaintext
/*!
|
|
* Copyright by Contributors 2017
|
|
*/
|
|
#include <dmlc/parameter.h>
|
|
#include <thrust/copy.h>
|
|
#include <thrust/device_ptr.h>
|
|
#include <thrust/device_vector.h>
|
|
#include <thrust/fill.h>
|
|
#include <xgboost/data.h>
|
|
#include <xgboost/predictor.h>
|
|
#include <xgboost/tree_model.h>
|
|
#include <xgboost/tree_updater.h>
|
|
#include <memory>
|
|
#include "../common/device_helpers.cuh"
|
|
#include "../common/host_device_vector.h"
|
|
|
|
namespace xgboost {
|
|
namespace predictor {
|
|
|
|
DMLC_REGISTRY_FILE_TAG(gpu_predictor);
|
|
|
|
/*! \brief prediction parameters */
|
|
struct GPUPredictionParam : public dmlc::Parameter<GPUPredictionParam> {
|
|
int gpu_id;
|
|
int n_gpus;
|
|
bool silent;
|
|
// declare parameters
|
|
DMLC_DECLARE_PARAMETER(GPUPredictionParam) {
|
|
DMLC_DECLARE_FIELD(gpu_id).set_default(0).describe(
|
|
"Device ordinal for GPU prediction.");
|
|
DMLC_DECLARE_FIELD(n_gpus).set_default(1).describe(
|
|
"Number of devices to use for prediction (NOT IMPLEMENTED).");
|
|
DMLC_DECLARE_FIELD(silent).set_default(false).describe(
|
|
"Do not print information during trainig.");
|
|
}
|
|
};
|
|
DMLC_REGISTER_PARAMETER(GPUPredictionParam);
|
|
|
|
template <typename IterT>
|
|
void IncrementOffset(IterT begin_itr, IterT end_itr, size_t amount) {
|
|
thrust::transform(begin_itr, end_itr, begin_itr,
|
|
[=] __device__(size_t elem) { return elem + amount; });
|
|
}
|
|
|
|
/**
|
|
* \struct DeviceMatrix
|
|
*
|
|
* \brief A csr representation of the input matrix allocated on the device.
|
|
*/
|
|
|
|
struct DeviceMatrix {
|
|
DMatrix* p_mat; // Pointer to the original matrix on the host
|
|
dh::BulkAllocator<dh::MemoryType::kDevice> ba;
|
|
dh::DVec<size_t> row_ptr;
|
|
dh::DVec<Entry> data;
|
|
thrust::device_vector<float> predictions;
|
|
|
|
DeviceMatrix(DMatrix* dmat, int device_idx, bool silent) : p_mat(dmat) {
|
|
dh::safe_cuda(cudaSetDevice(device_idx));
|
|
auto info = dmat->Info();
|
|
ba.Allocate(device_idx, silent, &row_ptr, info.num_row_ + 1, &data,
|
|
info.num_nonzero_);
|
|
auto iter = dmat->RowIterator();
|
|
iter->BeforeFirst();
|
|
size_t data_offset = 0;
|
|
while (iter->Next()) {
|
|
auto batch = iter->Value();
|
|
// Copy row ptr
|
|
dh::safe_cuda(cudaMemcpy(
|
|
row_ptr.Data() + batch.base_rowid, batch.offset.data(),
|
|
sizeof(size_t) * batch.offset.size(), cudaMemcpyHostToDevice));
|
|
if (batch.base_rowid > 0) {
|
|
auto begin_itr = row_ptr.tbegin() + batch.base_rowid;
|
|
auto end_itr = begin_itr + batch.Size() + 1;
|
|
IncrementOffset(begin_itr, end_itr, batch.base_rowid);
|
|
}
|
|
dh::safe_cuda(cudaMemcpy(data.Data() + data_offset, batch.data.data(),
|
|
sizeof(Entry) * batch.data.size(),
|
|
cudaMemcpyHostToDevice));
|
|
// Copy data
|
|
data_offset += batch.data.size();
|
|
}
|
|
}
|
|
};
|
|
|
|
/**
|
|
* \struct DevicePredictionNode
|
|
*
|
|
* \brief Packed 16 byte representation of a tree node for use in device
|
|
* prediction
|
|
*/
|
|
|
|
struct DevicePredictionNode {
|
|
XGBOOST_DEVICE DevicePredictionNode()
|
|
: fidx(-1), left_child_idx(-1), right_child_idx(-1) {}
|
|
|
|
union NodeValue {
|
|
float leaf_weight;
|
|
float fvalue;
|
|
};
|
|
|
|
int fidx;
|
|
int left_child_idx;
|
|
int right_child_idx;
|
|
NodeValue val;
|
|
|
|
DevicePredictionNode(const RegTree::Node& n) { // NOLINT
|
|
this->left_child_idx = n.LeftChild();
|
|
this->right_child_idx = n.RightChild();
|
|
this->fidx = n.SplitIndex();
|
|
if (n.DefaultLeft()) {
|
|
fidx |= (1U << 31);
|
|
}
|
|
|
|
if (n.IsLeaf()) {
|
|
this->val.leaf_weight = n.LeafValue();
|
|
} else {
|
|
this->val.fvalue = n.SplitCond();
|
|
}
|
|
}
|
|
|
|
XGBOOST_DEVICE bool IsLeaf() const { return left_child_idx == -1; }
|
|
|
|
XGBOOST_DEVICE int GetFidx() const { return fidx & ((1U << 31) - 1U); }
|
|
|
|
XGBOOST_DEVICE bool MissingLeft() const { return (fidx >> 31) != 0; }
|
|
|
|
XGBOOST_DEVICE int MissingIdx() const {
|
|
if (MissingLeft()) {
|
|
return this->left_child_idx;
|
|
} else {
|
|
return this->right_child_idx;
|
|
}
|
|
}
|
|
|
|
XGBOOST_DEVICE float GetFvalue() const { return val.fvalue; }
|
|
|
|
XGBOOST_DEVICE float GetWeight() const { return val.leaf_weight; }
|
|
};
|
|
|
|
struct ElementLoader {
|
|
bool use_shared;
|
|
size_t* d_row_ptr;
|
|
Entry* d_data;
|
|
int num_features;
|
|
float* smem;
|
|
|
|
__device__ ElementLoader(bool use_shared, size_t* row_ptr,
|
|
Entry* entry, int num_features,
|
|
float* smem, int num_rows)
|
|
: use_shared(use_shared),
|
|
d_row_ptr(row_ptr),
|
|
d_data(entry),
|
|
num_features(num_features),
|
|
smem(smem) {
|
|
// Copy instances
|
|
if (use_shared) {
|
|
bst_uint global_idx = blockDim.x * blockIdx.x + threadIdx.x;
|
|
int shared_elements = blockDim.x * num_features;
|
|
dh::BlockFill(smem, shared_elements, nanf(""));
|
|
__syncthreads();
|
|
if (global_idx < num_rows) {
|
|
bst_uint elem_begin = d_row_ptr[global_idx];
|
|
bst_uint elem_end = d_row_ptr[global_idx + 1];
|
|
for (bst_uint elem_idx = elem_begin; elem_idx < elem_end; elem_idx++) {
|
|
Entry elem = d_data[elem_idx];
|
|
smem[threadIdx.x * num_features + elem.index] = elem.fvalue;
|
|
}
|
|
}
|
|
__syncthreads();
|
|
}
|
|
}
|
|
__device__ float GetFvalue(int ridx, int fidx) {
|
|
if (use_shared) {
|
|
return smem[threadIdx.x * num_features + fidx];
|
|
} else {
|
|
// Binary search
|
|
auto begin_ptr = d_data + d_row_ptr[ridx];
|
|
auto end_ptr = d_data + d_row_ptr[ridx + 1];
|
|
Entry* previous_middle = nullptr;
|
|
while (end_ptr != begin_ptr) {
|
|
auto middle = begin_ptr + (end_ptr - begin_ptr) / 2;
|
|
if (middle == previous_middle) {
|
|
break;
|
|
} else {
|
|
previous_middle = middle;
|
|
}
|
|
|
|
if (middle->index == fidx) {
|
|
return middle->fvalue;
|
|
} else if (middle->index < fidx) {
|
|
begin_ptr = middle;
|
|
} else {
|
|
end_ptr = middle;
|
|
}
|
|
}
|
|
// Value is missing
|
|
return nanf("");
|
|
}
|
|
}
|
|
};
|
|
|
|
__device__ float GetLeafWeight(bst_uint ridx, const DevicePredictionNode* tree,
|
|
ElementLoader* loader) {
|
|
DevicePredictionNode n = tree[0];
|
|
while (!n.IsLeaf()) {
|
|
float fvalue = loader->GetFvalue(ridx, n.GetFidx());
|
|
// Missing value
|
|
if (isnan(fvalue)) {
|
|
n = tree[n.MissingIdx()];
|
|
} else {
|
|
if (fvalue < n.GetFvalue()) {
|
|
n = tree[n.left_child_idx];
|
|
} else {
|
|
n = tree[n.right_child_idx];
|
|
}
|
|
}
|
|
}
|
|
return n.GetWeight();
|
|
}
|
|
|
|
template <int BLOCK_THREADS>
|
|
__global__ void PredictKernel(const DevicePredictionNode* d_nodes,
|
|
float* d_out_predictions, size_t* d_tree_segments,
|
|
int* d_tree_group, size_t* d_row_ptr,
|
|
Entry* d_data, size_t tree_begin,
|
|
size_t tree_end, size_t num_features,
|
|
size_t num_rows, bool use_shared, int num_group) {
|
|
extern __shared__ float smem[];
|
|
bst_uint global_idx = blockDim.x * blockIdx.x + threadIdx.x;
|
|
ElementLoader loader(use_shared, d_row_ptr, d_data, num_features, smem,
|
|
num_rows);
|
|
if (global_idx >= num_rows) return;
|
|
if (num_group == 1) {
|
|
float sum = 0;
|
|
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
|
|
const DevicePredictionNode* d_tree =
|
|
d_nodes + d_tree_segments[tree_idx - tree_begin];
|
|
sum += GetLeafWeight(global_idx, d_tree, &loader);
|
|
}
|
|
d_out_predictions[global_idx] += sum;
|
|
} else {
|
|
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
|
|
int tree_group = d_tree_group[tree_idx];
|
|
const DevicePredictionNode* d_tree =
|
|
d_nodes + d_tree_segments[tree_idx - tree_begin];
|
|
bst_uint out_prediction_idx = global_idx * num_group + tree_group;
|
|
d_out_predictions[out_prediction_idx] +=
|
|
GetLeafWeight(global_idx, d_tree, &loader);
|
|
}
|
|
}
|
|
}
|
|
|
|
class GPUPredictor : public xgboost::Predictor {
|
|
protected:
|
|
struct DevicePredictionCacheEntry {
|
|
std::shared_ptr<DMatrix> data;
|
|
HostDeviceVector<bst_float> predictions;
|
|
};
|
|
|
|
private:
|
|
void DevicePredictInternal(DMatrix* dmat,
|
|
HostDeviceVector<bst_float>* out_preds,
|
|
const gbm::GBTreeModel& model, size_t tree_begin,
|
|
size_t tree_end) {
|
|
if (tree_end - tree_begin == 0) {
|
|
return;
|
|
}
|
|
|
|
std::shared_ptr<DeviceMatrix> device_matrix;
|
|
// Matrix is not in host cache, create a temporary matrix
|
|
if (this->cache_.find(dmat) == this->cache_.end()) {
|
|
device_matrix = std::shared_ptr<DeviceMatrix>(
|
|
new DeviceMatrix(dmat, param.gpu_id, param.silent));
|
|
} else {
|
|
// Create this matrix on device if doesn't exist
|
|
if (this->device_matrix_cache_.find(dmat) ==
|
|
this->device_matrix_cache_.end()) {
|
|
this->device_matrix_cache_.emplace(
|
|
dmat, std::shared_ptr<DeviceMatrix>(
|
|
new DeviceMatrix(dmat, param.gpu_id, param.silent)));
|
|
}
|
|
device_matrix = device_matrix_cache_.find(dmat)->second;
|
|
}
|
|
|
|
dh::safe_cuda(cudaSetDevice(param.gpu_id));
|
|
CHECK_EQ(model.param.size_leaf_vector, 0);
|
|
// Copy decision trees to device
|
|
thrust::host_vector<size_t> h_tree_segments;
|
|
h_tree_segments.reserve((tree_end - tree_begin) + 1);
|
|
size_t sum = 0;
|
|
h_tree_segments.push_back(sum);
|
|
for (auto tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
|
|
sum += model.trees[tree_idx]->GetNodes().size();
|
|
h_tree_segments.push_back(sum);
|
|
}
|
|
|
|
thrust::host_vector<DevicePredictionNode> h_nodes(h_tree_segments.back());
|
|
for (auto tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
|
|
auto& src_nodes = model.trees[tree_idx]->GetNodes();
|
|
std::copy(src_nodes.begin(), src_nodes.end(),
|
|
h_nodes.begin() + h_tree_segments[tree_idx - tree_begin]);
|
|
}
|
|
|
|
nodes.resize(h_nodes.size());
|
|
dh::safe_cuda(cudaMemcpy(dh::Raw(nodes), h_nodes.data(),
|
|
sizeof(DevicePredictionNode) * h_nodes.size(),
|
|
cudaMemcpyHostToDevice));
|
|
tree_segments.resize(h_tree_segments.size());
|
|
dh::safe_cuda(cudaMemcpy(dh::Raw(tree_segments), h_tree_segments.data(),
|
|
sizeof(size_t) * h_tree_segments.size(),
|
|
cudaMemcpyHostToDevice));
|
|
tree_group.resize(model.tree_info.size());
|
|
dh::safe_cuda(cudaMemcpy(dh::Raw(tree_group), model.tree_info.data(),
|
|
sizeof(int) * model.tree_info.size(),
|
|
cudaMemcpyHostToDevice));
|
|
|
|
device_matrix->predictions.resize(out_preds->Size());
|
|
auto& predictions = device_matrix->predictions;
|
|
out_preds->GatherTo(predictions.data(),
|
|
predictions.data() + predictions.size());
|
|
|
|
dh::safe_cuda(cudaSetDevice(param.gpu_id));
|
|
|
|
const int BLOCK_THREADS = 128;
|
|
const int GRID_SIZE = static_cast<int>(
|
|
dh::DivRoundUp(device_matrix->row_ptr.Size() - 1, BLOCK_THREADS));
|
|
|
|
int shared_memory_bytes = static_cast<int>(
|
|
sizeof(float) * device_matrix->p_mat->Info().num_col_ * BLOCK_THREADS);
|
|
bool use_shared = true;
|
|
if (shared_memory_bytes > max_shared_memory_bytes) {
|
|
shared_memory_bytes = 0;
|
|
use_shared = false;
|
|
}
|
|
|
|
PredictKernel<BLOCK_THREADS>
|
|
<<<GRID_SIZE, BLOCK_THREADS, shared_memory_bytes>>>(
|
|
dh::Raw(nodes), dh::Raw(device_matrix->predictions),
|
|
dh::Raw(tree_segments), dh::Raw(tree_group),
|
|
device_matrix->row_ptr.Data(), device_matrix->data.Data(),
|
|
tree_begin, tree_end, device_matrix->p_mat->Info().num_col_,
|
|
device_matrix->p_mat->Info().num_row_, use_shared,
|
|
model.param.num_output_group);
|
|
|
|
dh::safe_cuda(cudaDeviceSynchronize());
|
|
out_preds->ScatterFrom(predictions.data(),
|
|
predictions.data() + predictions.size());
|
|
}
|
|
|
|
public:
|
|
GPUPredictor() : cpu_predictor(Predictor::Create("cpu_predictor")) {}
|
|
|
|
void PredictBatch(DMatrix* dmat, HostDeviceVector<bst_float>* out_preds,
|
|
const gbm::GBTreeModel& model, int tree_begin,
|
|
unsigned ntree_limit = 0) override {
|
|
if (this->PredictFromCache(dmat, out_preds, model, ntree_limit)) {
|
|
return;
|
|
}
|
|
this->InitOutPredictions(dmat->Info(), out_preds, model);
|
|
|
|
int tree_end = ntree_limit * model.param.num_output_group;
|
|
|
|
if (ntree_limit == 0 || ntree_limit > model.trees.size()) {
|
|
tree_end = static_cast<unsigned>(model.trees.size());
|
|
}
|
|
|
|
DevicePredictInternal(dmat, out_preds, model, tree_begin, tree_end);
|
|
}
|
|
|
|
protected:
|
|
void InitOutPredictions(const MetaInfo& info,
|
|
HostDeviceVector<bst_float>* out_preds,
|
|
const gbm::GBTreeModel& model) const {
|
|
size_t n = model.param.num_output_group * info.num_row_;
|
|
const std::vector<bst_float>& base_margin = info.base_margin_;
|
|
out_preds->Reshard(devices);
|
|
out_preds->Resize(n);
|
|
if (base_margin.size() != 0) {
|
|
CHECK_EQ(out_preds->Size(), n);
|
|
out_preds->Copy(base_margin);
|
|
} else {
|
|
out_preds->Fill(model.base_margin);
|
|
}
|
|
}
|
|
|
|
bool PredictFromCache(DMatrix* dmat, HostDeviceVector<bst_float>* out_preds,
|
|
const gbm::GBTreeModel& model, unsigned ntree_limit) {
|
|
if (ntree_limit == 0 ||
|
|
ntree_limit * model.param.num_output_group >= model.trees.size()) {
|
|
auto it = cache_.find(dmat);
|
|
if (it != cache_.end()) {
|
|
HostDeviceVector<bst_float>& y = it->second.predictions;
|
|
if (y.Size() != 0) {
|
|
out_preds->Reshard(devices);
|
|
out_preds->Resize(y.Size());
|
|
out_preds->Copy(&y);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void UpdatePredictionCache(
|
|
const gbm::GBTreeModel& model,
|
|
std::vector<std::unique_ptr<TreeUpdater>>* updaters,
|
|
int num_new_trees) override {
|
|
auto old_ntree = model.trees.size() - num_new_trees;
|
|
// update cache entry
|
|
for (auto& kv : cache_) {
|
|
PredictionCacheEntry& e = kv.second;
|
|
DMatrix* dmat = kv.first;
|
|
HostDeviceVector<bst_float>& predictions = e.predictions;
|
|
|
|
if (predictions.Size() == 0) {
|
|
this->InitOutPredictions(dmat->Info(), &predictions, model);
|
|
}
|
|
|
|
if (model.param.num_output_group == 1 && updaters->size() > 0 &&
|
|
num_new_trees == 1 &&
|
|
updaters->back()->UpdatePredictionCache(e.data.get(), &predictions)) {
|
|
// do nothing
|
|
} else {
|
|
DevicePredictInternal(dmat, &predictions, model, old_ntree, model.trees.size());
|
|
}
|
|
}
|
|
}
|
|
|
|
void PredictInstance(const SparsePage::Inst& inst,
|
|
std::vector<bst_float>* out_preds,
|
|
const gbm::GBTreeModel& model, unsigned ntree_limit,
|
|
unsigned root_index) override {
|
|
cpu_predictor->PredictInstance(inst, out_preds, model, root_index);
|
|
}
|
|
void PredictLeaf(DMatrix* p_fmat, std::vector<bst_float>* out_preds,
|
|
const gbm::GBTreeModel& model,
|
|
unsigned ntree_limit) override {
|
|
cpu_predictor->PredictLeaf(p_fmat, out_preds, model, ntree_limit);
|
|
}
|
|
|
|
void PredictContribution(DMatrix* p_fmat,
|
|
std::vector<bst_float>* out_contribs,
|
|
const gbm::GBTreeModel& model, unsigned ntree_limit,
|
|
bool approximate, int condition,
|
|
unsigned condition_feature) override {
|
|
cpu_predictor->PredictContribution(p_fmat, out_contribs, model, ntree_limit,
|
|
approximate, condition,
|
|
condition_feature);
|
|
}
|
|
|
|
void PredictInteractionContributions(DMatrix* p_fmat,
|
|
std::vector<bst_float>* out_contribs,
|
|
const gbm::GBTreeModel& model,
|
|
unsigned ntree_limit,
|
|
bool approximate) override {
|
|
cpu_predictor->PredictInteractionContributions(p_fmat, out_contribs, model,
|
|
ntree_limit, approximate);
|
|
}
|
|
|
|
void Init(const std::vector<std::pair<std::string, std::string>>& cfg,
|
|
const std::vector<std::shared_ptr<DMatrix>>& cache) override {
|
|
Predictor::Init(cfg, cache);
|
|
cpu_predictor->Init(cfg, cache);
|
|
param.InitAllowUnknown(cfg);
|
|
devices = GPUSet::Range(param.gpu_id, dh::NDevicesAll(param.n_gpus));
|
|
max_shared_memory_bytes = dh::MaxSharedMemory(param.gpu_id);
|
|
}
|
|
|
|
private:
|
|
GPUPredictionParam param;
|
|
std::unique_ptr<Predictor> cpu_predictor;
|
|
std::unordered_map<DMatrix*, std::shared_ptr<DeviceMatrix>>
|
|
device_matrix_cache_;
|
|
thrust::device_vector<DevicePredictionNode> nodes;
|
|
thrust::device_vector<size_t> tree_segments;
|
|
thrust::device_vector<int> tree_group;
|
|
thrust::device_vector<bst_float> preds;
|
|
GPUSet devices;
|
|
size_t max_shared_memory_bytes;
|
|
};
|
|
XGBOOST_REGISTER_PREDICTOR(GPUPredictor, "gpu_predictor")
|
|
.describe("Make predictions using GPU.")
|
|
.set_body([]() { return new GPUPredictor(); });
|
|
} // namespace predictor
|
|
} // namespace xgboost
|